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Abstract—Given historical traffic distributions and associated
urban conditions observed in a city, the conditional urban
traffic estimation problem aims at estimating realistic future
projections of the traffic under a set of new urban conditions,
e.g., new bus routes, rainfall intensity and travel demands. The
problem is important in reducing traffic congestion, improving
public transportation efficiency, and facilitating urban planning.
However, solving this problem is challenging due to the strong
spatial dependencies of traffic patterns and the complex relations
between the traffic and urban conditions. In this paper, we
tackle the challenges by proposing a novel Complex-Condition-
Controlled Generative Adversarial Network (C3-GAN) for urban
traffic estimation of a region under various complex conditions.
C3-GAN features the following three novel designs on top of
standard cGAN model: (1) an embedding network mapping the
complex conditions to a latent space to find representations of
the urban conditions; (2) an inference network to enhance the
relations between the embedded latent vectors and the traffic
data. Extensive experiments on real-world datasets demonstrate
that our C3-GAN produces high-quality traffic estimations and
outperforms state-of-the-art baseline methods.

Index Terms—generative adversarial networks; urban traffic
estimation.

I. INTRODUCTION

Given the road network of a city and the historical traffic
status (e.g., volume, speed) over the network under various
complex conditions (e.g., travel demands, constructions, transit
line designs) in the city, the problem of conditional urban
traffic estimation problem aims at generating realistic traffic
distribution projections of the city under new, previously
unseen environmental conditions.

The urban traffic estimation problem has long been an
important issue in various aspects of urban planning, including
bus route planning, traffic management, land use design, etc.
Accurate urban traffic estimation can not only help to reduce
traffic congestion and improve the public transportation effi-
ciency, but also provide insights for new urban constructions.
For example, as illustrated in Figure 1, since the taxi demand
greatly influenced the local traffic in Shenzhen, China, new
subway stations were planned to be built to reduce the local
taxi demand and thus release the traffic burden. Before the

Fig. 1: Traffic before & after building subway stations.

deployment, traffic estimations were conducted aiming to find
the the best locations for new subway stations. Therefore,
urban traffic estimation is an important step when evaluating
an urban construction plan.
Challenges. Realistic and accurate urban traffic estimation is
usually sophisticated and challenging due to the following
reasons:
(1) Complex conditions. The urban conditions that affect
traffic distributions are usually complex and unstructured in
representation, such as multi-dimensional tensors or matrices
(e.g., subway routes) instead of simple labels or numeric
measures. The complexity of the conditions leads to difficulties
in building a strong connection between the conditions and the
traffic distribution, making it hard to capture the traffic changes
caused by these factors.
(2) Complex traffic spatial dependencies1. The traffic status at
a location is usually correlated with the traffic status in nearby
locations. Such traffic dependencies are hard to capture since
the underlying complex road networks usually lead to diverse
traffic patterns.

The urban traffic estimation problem has received a lot of at-
tentions in recent years. While most of the works addressed the
second challenge above, the first challenge is still unaddressed.
Some works [2], [3], [8] try to solve this problem with classical
machine learning models. However, when estimating traffic
status regarding to complex conditions, they typically cannot
get good performance since they are incapable of dealing with
complex conditions and accurately capturing traffic changes.

1In this paper, we focus on getting the estimation of the average traffic
under specific conditions so do not consider the temporal dependencies here.



TABLE I: Notations
Notations Descriptions
i, j Locations (coordinates in a grid world)
S = {sij} Grid cells within a city
h ∈ Rm×n Traffic condition
x ∈ Rm×n Traffic distribution
z ∈ Rv Randomly sampled noise
c ∈ Ru Embedded latent vector

Recently, many works have focused on applying deep neural
networks to solve traffic estimation problem. For example,
stacked autoencoder [11] and ConvLSTM [17], [18] are used
to predict travel demands and traffic accidents, respectively.
These models greatly improve the prediction accuracy, how-
ever, they did not consider the impact of conditions and thus
fail to solve the conditional urban traffic estimation problem.
Besides, TrafficGAN [19] and Curb-GAN [20] take simple
conditions into account and estimate traffic with advanced
GAN models. However, both of them cannot handle complex
conditions, which usually lead to model collapse or instability.
Contributions. In this paper, we aim to solve the condi-
tional urban traffic estimation problem and tackle both of the
aforementioned challenges from a traffic data generation per-
spective. We propose a novel model — Complex-Condition-
Controlled Generative Adversarial Network (C3-GAN), which
can successfully estimate traffic of an area based on complex
urban conditions. Figure 2 is our solution framework. Our
C3-GAN features an embedding network and an inference
network on top of the standard conditional GAN model. Our
main contributions can be summarized as follows:
• We formulate the conditional urban traffic estimation prob-

lem as a traffic data generation problem, and propose a
novel model — Complex-Condition-Controlled Generative
Adversarial Network (C3-GAN). C3-GAN handles com-
plex urban conditions through an fixed embedding network
which transforms the complex conditions to latent vectors,
and an inference network which enhances the connections
between the embedded vectors and the traffic data. (See
Section III-B.)

• We perform extensive experiments on real-world datasets to
evaluate our C3-GAN. The experimental results prove that
C3-GAN can significantly improve the urban traffic estima-
tion performance and outperform state-of-the-art baseline
methods. (See Section IV.) We also made our code and
dataset available to the research community [1].

II. PRELIMINARIES

The notations used in this paper are listed in Table I. Next,
we introduce the definitions and our problem statement.
Definition 1 (Grid cells). A whole city is divided into
m × n grid cells, which have equal side-length in latitude
and longitude. We denote the set of grid cells in the city as
S = {sij}, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Definition 2 (Urban conditions). Urban conditions (e.g.,
travel demands, time of the day, etc) usually have strong
correlations with road traffic. In this paper, we only consider
complex urban conditions, e.g., bus routes, rainfall intensity,
etc. These complex conditions are usually presented in matrix

Fig. 2: Solution framework.

form, thus, we denote a matrix h ∈ Rm×n as one feature map
of the city in a period of time, where each element hs ∈ R of
the matrix indicates the corresponding condition in a specific
grid cell s ∈ S.

For example, if we use travel demand of a city as an urban
condition, h will be a m×n travel demand matrix, each entry
of the matrix indicates the average travel demand of a grid
cell during a specific time slot.
Definition 3 (Traffic status and traffic distribution). Traffic
status indicates the basic knowledge of the road traffic, which
can be measured by different measurements, e.g., traffic speed,
traffic volume, etc. We denote xs as the average traffic status
of a grid cell s ∈ S within a period of time, and a matrix
x ∈ Rm×n as the traffic distribution of the city.
Problem Statement: A city area is partitioned into grid cells
S, given historical samples of complex urban conditions H =
{ht} and traffic distributions X = {xt} over a time span
1 ≤ t ≤ T , we aim to estimate the future traffic distributions
x̃ given a set of new features h̃.

III. METHODOLOGIES

Built upon the state-of-the-art (SOTA) literatures in genera-
tive models (See Section III-A), we propose C3-GAN for the
conditional urban traffic estimation problem. C3-GAN address
the two challenges we mentioned in Section I with its unique
designs:
(1) Complex conditions challenge: the proposed C3-GAN
introduces an randomly chosen embedding network and an
inference network on top of the original cGAN to extract high-
quality representations of the complex conditions and produce
good generation results (See Section III-B).
(2) Complex traffic spatial dependencies challenge: C3-GAN
applies convolutional layers inside each model component to
capture the traffic spatial dependencies.

A. SOTA of Deep Generative Models

Various generative adversarial networks (GANs) have been
proposed to build mappings from simple distributions to data
corpuses, e.g., images, texts, etc [7], [13]. The general idea
of conditional GANs matches the problem of urban traffic
estimation very well. Below, we briefly introduce two GAN



models that are relevant to our C3-GAN, namely, the condi-
tional GAN [12] and InfoGAN [4], and discuss the technical
gaps for them to solve our problem.
Conditional GAN. The conditional generative adversarial
network (cGAN) is a deep generative model proposed by
Mirza et al. [12]. The generation process of cGAN is governed
by conditions, which tackles a min-max game as shown in
Eq. 1. The goal of the generator G is to learn a distribution
matching the real data distribution pdata using random noises
z ∼ pz and conditions h, the discriminator D aims to
distinguish the true data pairs from the generated (“fake”)
ones.

min
G

max
D
LcGAN (G,D) =Ex∼pdata [logD(x,h)]

+ Ez∼pz
[log(1−D(G(z,h)))].

(1)
Limitation of cGAN. Since our goal is to generate urban traffic
estimations x using complex conditions h (e.g., bus routes,
travel demands), our intuition is to apply cGAN framework.
However, cGAN usually deals with simple conditions (e.g.,
discrete or continuous numbers), once the conditions become
more complex (e.g., multi-dimensional tensors or matrices), it
is hard for standard cGAN to build strong connections between
x and h and generate reasonable results due to the high-
dimensionality of h.
InfoGAN. InfoGAN proposed by Chen et al. [4] is an ex-
tension of GAN model [7], which adds a mutual information
based regularizer to enable disentangled representations. To
learn the semantic features of data, InfoGAN first splits the
latent code into two parts — the disentangled code vector
c and the remaining code vector z, and then maximizes the
mutual information I(c;G(c, z)) and thus realize the goal of
distinguishing data in an unsupervised fashion. The objective
is given by the following expression:

min
G

max
D
LGAN(G,D)− λI(c;G(c, z)), (2)

where LGAN(G,D) = Ex∼pdata [logD(x)] + Ez∼pz [log(1 −
D(G(z)))].
Limitation of InfoGAN. Even though InfoGAN enables disen-
tangled representations, it cannot be used to deal with condi-
tional traffic estimation problem with complex urban condi-
tions (e.g., bus routes, travel demands). InfoGAN learns data
representations from unlabeled data in a unsupervised learning
paradigm, however, once the dimension of the disentangled
code vector is too high, InfoGAN would fail since it is hard to
learn the relations between the data and the disentangled code.
In this paper, we are inspired by InfoGAN loss (especially
the mutual information based regularizer) which can help to
build strong connections between the generated data and the
conditions, and design a new model C3-GAN to better deal
with the complex conditions, the details are elaborated in
Section III-B.

B. Objective

Given the limitations of SOTA works of generative models
to our traffic estimation problem, we propose a novel model

C3-GAN to tackle the conditional urban traffic estimation
problem. The overview of C3-GAN is shown in Figure 3(a).
In C3-GAN, we first focus on solving the complex condition
challenge, thus, we propose to transform high-dimensional h
to low-dimensional vector c ∈ Ru with an randomly chosen
and fixed embedding network E. The embedded latent vectors
c should reflect key characteristics of the corresponding urban
conditions h. Once we use the embedded vector c and noise
z ∼ pz to generate the urban traffic x ∼ G(z, c), we need
to ensure that the generated x is like real and matches the
original condition h, and also guarantee that the embedded
latent vector c can accurately infer the corresponding traffic
x.

Since we use the embedding c of urban condition h for
generation, the objective can be written as:

min
G

max
D

V (G,D) = Ex∼pdata [logD(x,h)]

+ Ez∼pz [log(1−D(G(z, c),h))]. (3)

Eq.3 alone is certainly not good enough to produce good gen-
eration results, since the connections between c and x are not
guaranteed. Borrowing the idea from InfoGAN, maximizing
the mutual information I(c; (G(z, c),h)) can help to build
strong connections between c and generated x.

In information theory, mutual information between two ran-
dom variables X and Y measures the “amount of information”
learned from Y about X . The mutual information between X
and Y and be written as:

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X). (4)

Based on Eq.4, the mutual information I(X;Y ) can be
interpreted as the reduction of uncertainty in X when Y is
provided. I(X;Y ) = 0 represents X and Y are independent
and knowing one variable reveals nothing about the other; by
contrast, maximizing I(X;Y ) means Y can provide the most
information about X .

Hence, to enhance the connections between embedded
vectors c and the generated traffic x, we propose to max-
imize I(c; (G(z, c),h)) instead of I(c;G(z, c)), since both
of x ∼ G(z, c) and h contain the information of c, which
indicates G(z, c) and h together have stronger mutual infor-
mation with c than G(z, c) alone does. Thus, maximizing
I(c; (G(z, c),h)) can not only enhance the control of c
over generated x ∼ G(z, c) but also potentially accelerate
the convergence. Therefore, we add a mutual information
regularizer to Eq.3:

min
G

max
D

VI(G,D) = V (G,D)− λI(c; (G(z, c),h));

where c = E(h).
(5)

In practice, the mutual information term I(c; (G(z, c),h))
is hard to characterize analytically, since we do not have the
access to the posterior distribution P (c|(G(z, c),h)). Instead,
we can calculate the lower bound of I(c; (G(z, c),h)) and use
the an auxiliary distribution Q(c|(G(z, c),h)) to approximate



Fig. 3: C3-GAN structure.
P (c|(G(z, c),h)). We denote x̂ = (G(z, c),h) for simplicity,
the lower bound of I(c; (G(z, c),h)) is as follows:

I(c; (G(z, c),h)) = H(c)−H(c | (G(z, c),h))
= Ex∼G(z,c),h∼pdata

[
Ec′∼P (c|x̂) [logP (c′ | x̂)]

]
+H(c)

= Ex∼G(z,c),h∼pdata [DKL(P (· | x̂)‖Q(· | x̂))︸ ︷︷ ︸
≥0

+ Ec′∼P (c|x̂) [logQ (c′ | x̂)]] +H(c)

≥ Ex∼G(z,c),h∼pdata

[
Ec′∼P (c|x̂) [logQ (c′ | x̂)]

]
+H(c)

= LI(G,Q),
(6)

where Q is the auxiliary distribution, and we can treat Q as
a inference neural network which uses x̂ to infer c just as
illustrated in Figure 3(a). Moreover, we can simply omit H(c)
in LI(G,Q) since it is a constant when c is sampled from a
fixed distribution. As a result, our final objective is as Eq.7:

min
G,Q

max
D

V (D,G,Q) = V (G,D)− λLI(G,Q);

where c = E(h).
(7)

C. C3-GAN Architecture

To tackle the complex spatial dependencies challenge, we
design a unique architecture for C3-GAN. Figure 3(b) shows
the detailed architecture of C3-GAN, which contains an em-
bedding network E, a generator G, a discriminator D and an
inference network Q. C3-GAN applies convolutional layers
inside each model component to capture the traffic spatial
dependencies. Next, we will introduce our model architecture
in detail.

The embedding network E is a randomly chosen and fixed
network, which aims to find a latent representation for the
high-dimensional urban condition h. The input of E is an
original condition h, the output is a low-dimensional latent
vector c. Inside E, we have several convolutional layers, which
help to capture the spatial patterns of urban conditions, each
one is followed by a batch normalization and activated by
Leaky ReLU [15], the final fully-connected layer is activated
by hyperbolic tangent function.

The generator G aims to generate like-real traffic distribu-
tions with respect to an embedded latent vector c. The input
of the generator G includes i) a noise vector z, which is
randomly sampled from Gaussian distribution, i.e., z ∼ pz ,
and ii) an embedded latent vector c. G outputs the generated
traffic distribution x ∼ G(z, c). Inside the generator G,
c and z are concatenated together and go through some

convolutional layers, where all the layers but the last one
are batch normalized and activated by ReLU, the last layer
is activated by hyperbolic tangent.

The discriminator D aims to distinguish the real data from
the generated data by giving high score if the input x is from
real data and matches the urban condition h. It yields a low
score if the input x is “fake” or does not match the input
h. Its input includes i) traffic distribution x, which can be
real data sampled from the dataset or fake data generated by
the generator, i.e., x ∼ pdata or x ∼ G(z, c), and ii) the urban
condition h. Inside the discriminator D, it contains 4 different
convolutional layers and two fully-connected layers, each layer
is batch normalized and activated by leaky ReLU function, the
last fully-connected layer is activated by Sigmoid and outputs
a score between 0 and 1 indicating the extent to which the
data is real.

The inference network Q aims to recover the distribution
of latent vector c using (x,h) pairs, so Q takes the same input
as D, which includes x and h. Q has the similar architecture to
the discriminator. Inside the inference network Q, it contains 4
different convolutional layers and two fully-connected layers,
each convolutional layer is batch normalized and activated
by leaky ReLU function, the final outputs of the inference
network include the mean and variance of the c distribution.

IV. EVALUATION

In this section, we will first introduce the real-world datasets
we use, and then present baselines and evaluation metrics. At
last, we provide our experimental results.

A. Dataset and Experiment Descriptions

Dataset Descriptions. We validate our model on real-world
datasets: (1) traffic speed, (2) taxi inflow, (3) bus routes and
(4) travel demand. The detailed information of the dataset is
shown in Table II.
• Traffic speed. The hourly average traffic speed is extracted

from GPS records collected from taxis in Shenzhen, China
from Jul 1st to Dec 31st, 2016. The whole city is partitioned
into 40 × 50 grid cells with a side-length l1 = 0.0084◦ in
latitude and l2 = 0.0126◦ in longitude, and the traffic status
in each grid cell is measured by average traffic speed. The
data size is (1944, 1, 40, 50), which means there are 1944
traffic distributions in total, and each traffic distribution is a
40× 50 matrix.

• Taxi inflow. The data is collected from taxis in Shenzhen,
China from July 1st to Dec. 31st, 2016. Taxi inflow is the



TABLE II: Dataset descriptions.

Dataset Timespan Data size Dimension
Traffic speed 07/01/2016-12/31/2016 (1944, 1, 40, 50) 40× 50
Taxi inflow 07/01/2016-12/31/2016 (1944, 1, 40, 50) 40× 50
Bus routes 07/01/2016-12/31/2016 (1944, 20, 40, 50) 20× 40× 50

Travel demand 07/01/2016-12/31/2016 (1944, 1, 40, 50) 40× 50

count of all taxis that stayed or arrived at each grid cell
within one hour. The data size is (1944, 1, 40, 50), which
indicates there are 1944 traffic distributions (of 1-hour slot)
in total, each traffic distribution is a 40× 50 matrix.

• Bus routes. The bus data is collected from 20 different bus
routes in Shenzhen, China from July 1st to Dec 31st, 2016.
Since there are 990 bus routes in total in Shenzhen City, and
only a few of them got updated during July 1st to Dec 31st,
2016, thus, we randomly sample 20 bus routes for simplicity
which includes both the unchanged and updated ones. For
each bus route, we have the bus route map which is also
divided into 40 × 50 grid cells, and the value of each grid
cell indicates the number of buses passing this area within
one hour. The data size is (1944, 20, 40, 50), which indicates
there are 1944 time slots (1-hour), each time slot has 20 bus
route maps, and each bus route map is a 40× 50 matrix, so
the data dimension for each time slot is 20× 40× 50.

• Travel demand. The travel demand data is collected from
taxis GPS records in Shenzhen, China from July 1st to Dec.
31st, 2016. To extract the travel demands, in each time slot
of a day, i.e., one hour, we count the total taxi pickup events
within each grid cell. In general, it is hard to obtain the total
travel demand including all transport modes. In this work,
we use the demand for taxis to represent the local travel
demand, where many studies have shown that taxi demands
represent the total demands quite well [6], [14], [20]. The
data size is also (1944, 1, 40, 50), which indicates there are
1944 travel demand maps (in 1-hour slot), and each travel
demand map is a 40× 50 matrix.

Experiment Descriptions. We introduce all different traffic
estimation experiments we conducted below.

• Task 1: traffic speed and taxi inflow estimation based
on bus route changes. In this task, we study how the bus
route changes (as urban condition) influence the traffic, thus,
we estimate the traffic distributions in Shenzhen City given
the complex bus routes as conditions which should be 20×
40 × 50 tensors, and traffic speed and taxi inflow are both
estimated. All the data including traffic speed, taxi inflow
and bus route data is divided into training set (90% of data)
and testing set (the remaining 10%).

• Task 2: traffic speed and inflow estimation based on
travel demand changes. In this task, we study how the
travel demand changes influence the traffic status, thus, we
estimate the traffic distributions in Shenzhen City given the
complex travel demands as conditions which are 40 × 50
matrices. All the data including traffic speed, taxi inflow and
travel demand data is also divided into training set (90% of
data) and testing set (the remaining 10%).

B. Baselines

To evaluate the effectiveness of our model, we compare
our C3-GAN with state-of-the-art methods. We first use the
following two baselines to validate that standard cGAN cannot
successfully estimate urban traffic based on complex urban
conditions:

• cGAN [12]. This is the standard conditional GAN, which
applies convolutional layers inside both generator and
discriminator.

• cGAN+L1 [9]. This method uses standard conditional
GAN structure. The objective of discriminator stays un-
changed, while the generator is trained using both the
adversarial loss and the L1 loss.

Then, we use two baseline methods to validate that cGAN
with a single embedding network E or a Q network is not good
enough to solve the traffic estimation problem with complex
conditions:

• cGAN+E [5]. This method uses a predefined embed-
ding network E (namely, a randomly selected network)
to transform the original complex conditions to low-
dimensional conditions. With the embedded conditions in
a latent space, the standard conditional GAN is applied.

• InfoGAN [4], [16]. InfoGAN adds an encoder Q to
the standard GAN structure, the details are explained in
Section III-A.

Besides, we also have state-of-the-art GAN models for
traffic estimation as baselines:

• Curb-GAN [10], [20]. Curb-GAN applies self-attention
and convolutional layers to deal with sequential data
generation problem, here only convolutional layers are
applied to generate average traffic estimations. The gen-
erator is trained with the adversarial loss and the L2 loss
together.

• TrafficGAN [19] TrafficGAN solves the conditional traf-
fic estimation problem, where the conditions are simple
discrete values. TrafficGAN applies several dynamic con-
volutional layers inside generator and discriminator to
capture spatial patterns of traffic.

C. Evaluation Metrics

In our experiments, mean absolute percentage error (MAPE)
and rooted mean square error (RMSE) are used to evaluate our
model:

MAPE =
1

ns

ns∑
i=1

|yi − ŷi| /yi,

RMSE =

√√√√ 1

ns

ns∑
i=1

(yi − ŷi)2, (8)

where ns is the total number of grid cells in the target city
area, yi is the ground-truth traffic status observed in one grid
cell si, and ŷi is the corresponding predicted result.



TABLE III: Performance on task 1: traffic speed and taxi inflow estimation based on bus route changes.
Methods cGAN cGAN+L1 Curb-GAN TrafficGAN cGAN+E InfoGAN C3-GAN

Traffic speed RMSE 49.08 36.81 44.52 108.78 104.41 80.94 29.05
MAPE 6.68 2.92 3.32 62.43 60.76 42.38 2.48

Taxi inflow RMSE 524.62 415.78 730.66 1579.56 1494.72 1771.25 251.23
MAPE 65.67 15.38 64.66 670.33 649.39 631.32 14.58

TABLE IV: Performance on task 2: traffic speed and taxi inflow estimation based on travel demand changes.
Methods cGAN cGAN+L1 Curb-GAN TrafficGAN cGAN+E InfoGAN C3-GAN

Traffic speed RMSE 19.73 60.07 48.90 69.31 23.37 84.17 18.32
MAPE 3.24 12.42 8.34 39.39 6.62 45.40 2.83

Taxi inflow RMSE 170.09 300.15 758.76 1364.87 1570.29 1872.08 28.05
MAPE 10.98 30.96 165.10 430.21 381.00 799.81 5.75

D. Results

1) Overall performance results: In this part, we present
the overall performance of our C3-GAN compared with all
baseline models on two different traffic estimation tasks. For
all deep models, we train and test all methods five times,
and we pick the best trained model and show the testing
results including RMSE and MAPE. We have the following
observations based on all statistics from both tasks.

First, the overall performance of task 1 is presented in
Table III, which includes both traffic speed and taxi inflow
estimation based on bus route changes, we find the classic
baseline models including cGAN, cGAN+L1, Curb-GAN and
TrafficGAN present high testing errors (i.e., high RMSE and
high MAPE), which indicates these methods cannot deal with
the conditional generation regarding to complex conditions
very well. Besides, compared with our C3-GAN, the two
baseline models incluing cGAN+E and InfoGAN still present
bad performance, which means it is not enough to only
equip cGAN with a simple randomly pre-defined embedding
network or an inference network. The performance of task 2
is shown in Table IV which presents similar results.

V. CONCLUSION

In this paper, we propose a novel Complex-Condition-
Controlled Generative Adversarial Network (C3-GAN) to
estimate the regional urban traffic based on complex urban
conditions, e.g., new bus routes, rainfall intensity and travel
demands. In C3-GAN, we design i) an fixed embedding
network to map the complex urban conditions to a latent
space and extract representations of complex conditions, and
ii) an inference network to enhance the relations between the
embedded latent vectors and the traffic data. Our experimental
results using real-world datasets demonstrate that our C3-GAN
outperforms state-of-the-art baselines in the traffic estimation
with complex urban conditions, e.g., bus route planning and
travel demands.
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