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Abstract—The conditional urban traffic estimation problem
aims to accurately estimate the future traffic status based on the
changing local travel demands, which has long been an important
issue in urban planning. However, most existing methods require
the target city to provide a large amount of traffic data. Once
traffic estimation is performed in a “new” city where many
urban services and transportation infrastructures are not built
and thus no prior data is available, those works would fail
due to the lack of data. In this paper, we aim to solve the
conditional urban traffic estimation problem in case of data
scarcity (i.e., the target city cannot provide any prior data) and
tackle the main challenges including (1) knowledge learning from
the source and (2) knowledge adaptation without prior traffic
data. We propose a novel generative adversarial network —
Meta Spatial-Temporal Generative Adversarial Network (Mest-
GAN), which can successfully estimate traffic in the target city
based on local travel demands without the access to any prior
traffic data. To address the first challenge, we learn the latent
distribution of travel demands with the inference network, the
latent distribution also indicates the diverse spatial-temporal
traffic patterns. To solve the second challenge, we use the travel
demand data in the target city for adaptation, where the inference
network infers a latent code guiding the generator to produce
accurate traffic estimations. Extensive experiments on real-world
multiple-city datasets demonstrate that our Mest-GAN produces
high-quality traffic estimations and outperforms state-of-the-art
baseline methods.

Index Terms—generative adversarial networks; urban traffic
estimation.

I. INTRODUCTION

The conditional urban traffic estimation problem aims to ac-
curately estimate the future traffic status based on the changing
local travel demands, which has long been an important issue
in urban planning, especially in land use planning, subway
routes planning, etc. In recent years, many works [9], [32],
[33] have tried to solve the conditional urban traffic estimation
problem to reduce potential traffic congestion and improve
transportation efficiency using both classical machine learning
models and deep learning models. However, these methods
require the target city to provide a large amount of traffic data
for training. If traffic estimation is performed in a “new” city
where many urban services and transportation infrastructures

Fig. 1: Traffic before & after building subway stations.
are not built and thus no prior data is available, those previous
works would fail due to the lack of data. Thus, in this paper, we
aim to solve the conditional urban traffic estimation problem
in case of data scarcity (i.e., the target city cannot provide
any prior data).

To solve this problem, many works proposed to borrow
the transfer learning or meta-learning paradigm where the
knowledge learned from other source cities with abundant
data is adapted to the target city to facilitate traffic estimation.
For example, RegionTrans [27] proposed to predict the traffic
by matching different locations in the target city to those in
the source city based on traffic similarities. TL-DCRNN [15]
forecast highway traffic by transferring the knowledge of the
source to the target using graph neural networks. He et al.
proposed a new transfer learning framework [8] for human
mobility generation. STrans-GAN [34] utilized a spatially
transferable generative adversarial network to estimate traffic
in the target city by distinguishing and transferring diverse
traffic patterns in the source cities. MetaST [28] focused on
time series traffic prediction, which viewed each source city
as a meta training task, and meta-learned a well-generalized
model for future adaptation. However, all these methods still
require prior data from the target city. Once the target city
cannot provide any historical traffic data for model training or
fine-tuning, all the existing methods cannot guarantee decent
estimation performance.
Challenges. In this paper, we propose a novel generative
adversarial meta-learning framework to solve the problem of
conditional urban traffic estimation in a target city without any



Fig. 2: Illustration of traffic spatial-temporal patterns.
prior data, but we are hindered by some major challenges:
(1) Knowledge learning from the sources. The knowledge
learned from source cities should include diverse spatial-
temporal traffic patterns, which are very complicated and hard
to detect. As illustrated in Figure 2, the traffic usually presents
various spatial patterns across different regions due to the
complex road networks, as well as complex temporal patterns
from time to time. However, such spatial-temporal traffic
patterns are hard to learn, some previous methods [28], [34]
only consider spatial patterns without taking temporal patterns
into consideration, and they manually define the number of
traffic patterns, which usually lead to poor generalization and
model instability.
(2) knowledge adaptation without prior traffic data. The
learned knowledge should be quickly adapted to the target
city without the access to any prior traffic data. However, the
typical transfer learning methods [27], [34] require traffic data
from the target city in the fine-tuning process. The supervised
meta-learning methods [5], [28] also need traffic data from
the target during the model adaptation process.
Contributions. In this paper, we aim to solve the conditional
urban traffic estimation problem in case of data scarcity (i.e.,
the target city cannot provide any prior data) and tackle both of
the aforementioned challenges from the generative adversarial
meta-learning perspective. We propose a novel generative
adversarial network — Meta Spatial-Temporal Generative
Adversarial Network (Mest-GAN), which can successfully
estimate traffic in the target city based on local travel demands
without the access to any prior traffic data. Figure 3 is our
solution framework. Our Mest-GAN features a generator, a
discriminator and an inference network, the well-generalized
inference network and generator can be used for future traffic
estimation in the target city. Moreover, to solve the first chal-
lenge, we learn the latent distribution of travel demands with
the inference network, the latent distribution also indicates the
diverse spatial-temporal traffic patterns. To solve the second

TABLE I: Notations
Notations Descriptions
S = {sij} Grid cells within a city
R = {Rij} Set of regions within a city
cs ∈ N Travel demand of a grid cell s
CR

t ∈ Nn×n Travel demand of region R at time t
CR = {CR

1 , . . . ,CR
T } Travel demand in consecutive time slots

xs ∈ R Traffic status of a grid cell s
XR

t ∈ Rn×=n Traffic distribution of region R at time t
XR = {XR

1 , . . . ,XR
T } Traffic distribution in consecutive time slots

c latent variable
Vsr = {visr} Source cities
Vtg = {vitg} Target cities
Csr = {CR} Travel demands from source city regions
X sr = {XR} traffic distributions from source city regions
Ctg = {CR} Travel demands from target city regions
X̃ tg = {X̃R} Estimated traffic for target city regions

challenge, we use the travel demand data in the target city for
adaptation, where the inference network infers a latent code
guiding the generator to produce accurate traffic estimations.

Our main contributions can be summarized as follows:
• We formulate the cross-city conditional urban traffic esti-

mation problem as an unsupervised meta-learning problem
and we solve this problem from generative adversarial
meta-learning perspective. A novel model — Meta Spatial-
Temporal Generative Adversarial Network (Mest-GAN) is
proposed, which can successfully estimate the traffic in
target city in consecutive time slots. (See Section III-A.)

• We insert a latent variable to both generator and discrim-
inator, which indicates the complex spatial-temporal traffic
patterns of traffic. The inference network is designed to
learn the latent distribution with travel demand data in the
meta-training process. In the meta testing process, we use
the travel demand data in the target city for adaptation,
where the inference network infers a latent code guiding
the generator to produce accurate traffic estimations, and
thus the prior traffic data in the target city is not required.
(See Section III-B and III-C.)

• We perform extensive experiments on multiple-city real-
world datasets to evaluate our Mest-GAN. The experimental
results prove that our Mest-GAN can significantly improve
the urban traffic estimation performance in the data scarcity
scenario and outperform state-of-the-art baseline methods.
(See Section IV.) We also made our code and dataset
available to the research community [1].

II. PRELIMINARIES

The notations used in this paper are listed in Table I. Next,
we introduce the definitions and our problem statement in
detail.
Definition 1 (Grid cells). For a specific city, we partition the
whole city area into a1 × a2 grid cells with equal side-length
in latitude and longitude, we denote the set of grid cells as
S = {sij}, where 1 ≤ i ≤ a1, 1 ≤ j ≤ a2.

In our study, grid cells are the minimum units where traffic
status and travel demand are measured. Alternatively, traffic
estimation will be performed at a target region.
Definition 2 (Target region). A target region R formed by
n×n grid cells is a square geographic region in the city. The



Fig. 3: Solution framework.
whole city can be split into many overlapping regions denoted
as R = {Rij}, where Rij = ⟨sij , n⟩ is uniquely defined by
the grid cell sij in the top-left corner of the region and a
number n indicating the side-length of the region.
Definition 3 (Travel demand). The travel demand of an area
captures the total number of departures and arrivals during a
specific time slot. In this paper, we denote the travel demand of
a grid cell s in time slot t as cst ∈ N. Given a target region R,
CR

t ∈ Nn×n is an n×n matrix representing the travel demand
of all grid cells within R during time slot t. Moreover, the
travel demand of a target region R from time t = {1, · · · , T}
is denoted as a sequence CR = {CR

1 , . . . ,CR
T } ∈ NT×n×n.

Definition 4 (Traffic status and traffic distribution). Traffic
status indicates the quality of traffic, which can be measured
by traffic speed, traffic inflow/outflow, traffic volume, etc. We
denote xs

t ∈ R as the average traffic status of grid cell s in time
slot t. Similarly, given a target region R with n×n grid cells,
we denote the matrix XR

t ∈ Rn×n as the traffic distribution
of R during time slot t. Moreover, the traffic distributions of
a target region R from time t = {1, · · · , T} is denoted as a
sequence XR = {XR

1 , . . . ,XR
T } ∈ RT×n×n.

Problem Statement: Given multiple source cities Vsr = {visr}
and target cities Vtg = {vitg} partitioned into grid cells,
historical samples of travel demands Csr = {CR} and traf-
fic distributions X sr = {XR} from source cities, and the
travel demands Ctg = {CR} from target cities without any
prior traffic data, we aim to estimate the traffic distributions
X̃ tg = {X̃R} based on Ctg.

III. METHODOLOGIES

To estimate the urban traffic based on the local travel de-
mands, we can simply view the travel demands as conditions,
and apply the state-of-the-art generative adversarial networks
including cGAN [16], TrafficGAN [32], Curb-GAN [33],
C3-GAN [35]. However, these model require large amounts
of training data, and they definitely cannot work when the

target city cannot provide data. Thus, in this paper, to solve
the conditional urban traffic estimation problem in case of
data scarcity (i.e., the target city cannot provide any prior
data), we propose a novel generative adversarial meta-learning
framework — Meta Spatial-Temporal Generative Adversarial
Network (Mest-GAN), which borrows the traffic knowledge
learned from multiple source cities, adapts the knowledge to
the target city without access to any prior data, and finally
generates realistic traffic estimations in the target city. Mest-
GAN also addresses the two challenges we mentioned in
Section I with its unique designs:
(1) Knowledge learning: Mest-GAN has a uniquely designed
architecture, which includes a generator G, a discriminator
D, and an inference network Q. To enable the model au-
tomatically learn diverse spatial-temporal traffic patterns, we
insert a latent variable to both generator and discriminator. The
inference network is designed to learn the latent distribution
with travel demand data. Novel meta-training algorithm is
designed (See Section III-A and Section III-B).
(2) Knowledge adaptation: In the adaptation, we use the
travel demand data in the target city for adaptation, where the
inference network infers a latent code guiding the generator to
produce accurate traffic estimations, and thus the prior traffic
data in the target city is not required (See Section III-C).

A. Objective

In many previous works [32]–[35], the conditional urban
traffic estimation problem can be formulated as a traffic
generation problem as below:

min
G

max
D

LcGAN (G,D) =EX∼pdata [logD(X,C)]

+ EZ∼pZ
[log(1−D(G(Z,C)))],

(1)
where Z is random noise sampled from Gaussian distribution
N(0, 1), G(Z,C) is a generator aiming to generate traffic
distributions similar to the real traffic pdata, D(X,C) is a
discriminator trying to distinguish the real data sampled from
the dataset and the generated data sampled from the generator.
The whole generation process is governed by conditions C,
which have a strong relation to the traffic data X . Both
generator and discriminator are deep neural networks, and the
well-trained generator can successfully produce realistic traffic
distributions matching the input travel demand C.

However, Eq 1 can only deal with the traffic estimation
problem when the target city can provides large amounts of
historical traffic data. Once we cannot collect enough data
from the target city, this model would definitely fail. Moreover,
this model can only estimate the traffic in a single city, once
the data is collected from multiple source cities, the model
will simply assume all the data is from the same city, and
thus fail to distinguish diverse spatial-temporal traffic patters
across cities and regions.

Therefore, to enable the model to automatically learn di-
verse traffic patterns from multiple source cities, we insert a
latent variable m to the generator and discriminator. m ∈
p(m) is a latent code indicating a specific spatial-temporal



Fig. 4: Mest-GAN structure.
traffic pattern. Build upon the previous conditional generative
adversarial networks (cGAN) based models, we transform the
Eq 1 to Eq 2 as below:

min
G

max
D

V (G,D) = EX,C∼pdata [logD(X,C,m)]

+ EZ∼pZ
[log(1−D(G(Z,m),m))],

(2)

where the we use the latent code m ∈ p(m) to guide the
generation process, and the discriminator needs to tell the real
traffic data from the generated one, and the real travel demand
from the generated travel demand.

Moreover, since the condition (i.e., travel demands) is
highly related to the local traffic, which has been validated
by many previous works [32], [33], we propose to add a
mutual information term to Eq 2 to strength the connection
between the travel demands and the latent variable m. The
mutual information between the latent variable m and the
travel demands is denoted as I(m,C), the objective with the
mutual information regularizer is as follows:

min
G

max
D

VI(G,D) = V (G,D)− λI(m;C),

where C = G(Z,m).
(3)

In Eq 3, the latent variable m helps to identify different
traffic patterns from the traffic data collected from multiple
source cities, and it also enables the fast adaptation to a new
region in the target city with only travel demand data available.
However, in practice, it is hard to directly maximize the mutual
information I(m;C) without the access to the posterior dis-
tribution P (m|C). Instead, we calculate the variational lower
bound [2], [21] of I(m;C) and use an auxiliary distribution

Q(m|C) to approximate the true posterior P (m|C):

I(m;G(Z,m)) = H(m)−H(m | G(Z,m))

= EC∼G(Z,m)

[
Em′∼P (m|Ĉ)

[
logP

(
m′ | Ĉ

)]]
+H(m)

= EC∼G(Z,m)[DKL(P (· | Ĉ)∥Q(· | Ĉ))︸ ︷︷ ︸
≥0

+ Em′∼P (m|Ĉ)

[
logQ

(
m′ | Ĉ

)]
] +H(m)

≥ EC∼G(Z,m)

[
Em′∼P (m|Ĉ)

[
logQ

(
m′ | Ĉ

)]]
+H(m)

= LI(G,Q),
(4)

where p(m) is a prior distribution, Q is the auxiliary distri-
bution, and we can treat Q as an inference neural network,
which uses C to infer m. Moreover, we can simply omit
H(m) in LI(G,Q) since it is a constant when m is sampled
from a fixed distribution. As a result, the final objective for
our Meta Spatial-Temporal Generative Adversarial Network
(Mest-GAN) is as Eq 5:

min
G,Q

max
D

V (D,G,Q) = V (G,D)− λLI(G,Q). (5)

B. Mest-GAN Architecture

Mest-GAN can successfully solve the cross-city conditional
urban traffic estimation problem and address the limitations
of the state-of-the-arts. The overview of the model is shown
in Figure 4(a). Mest-GAN contains a generator G which
generates traffic distributions of a region, a discriminator
which tries to distinguish the real data and the generated data,
and an inference network which infers the latent code based
on the travel demand. Besides, Mest-GAN captures complex
spatial-temporal dependencies with convolutional layers and
self-attention mechanism within each model component (i.e.,
the generator, discriminator and the inference network).

The generator G aims to generate like-real traffic distribu-
tions with respect to a latent code m and the random noise
Z. The input of the generator G includes i) a noise vector
Z, which is randomly sampled from Gaussian distribution,
i.e., Z ∼ pZ , and ii) a latent code m. The latent vector
indicates a specific spatial-temporal traffic pattern which is



learned from the corresponding travel demand. G outputs
the generated traffic distribution X ∼ G(Z,m) and the
recovered travel demand C ∼ G(Z,m). Inside the generator
G, m and Z are concatenated together and go through several
convolutional layers, a multi-head self-attention layer [25]
and a feed-forward network aiming to capture the complex
spatial-temporal dependencies of traffic. The multi-head self-
attention layer and a feed-forward network including two fully-
connected layers are activated by ReLU activation function
[19], and they are followed by an addition operation and a
layer normalization. The final results are activated by hyper-
bolic tangent function.

The discriminator D aims to tell the real data sampled the
dataset from the “fake” data generated by the generator. D will
give a high score if the input traffic sequence X is from the
training dataset and matches the input travel demand sequence
C, besides, D will also produce a high score if the input travel
demand sequence C is real. By contrast, D will yield a low
score if the input traffic X or travel demand C is generated by
the generator, or they do not match. The input of D includes i)
traffic sequence X , which can be real data sampled from the
dataset or fake data generated by the generator, i.e., X ∼ pdata
or X ∼ G(Z,m), ii) the travel demand sequence C and iii)
the latent code m. Inside the discriminator D, m, X and
C are concatenated together and go through several convolu-
tional layers and the self-attention mechanism [25] aiming to
capture the complex spatial-temporal dependencies of traffic,
the self-attention mechanism is composed of a multi-head self-
attention layer and a feed-forward network including two fully-
connected layers activated by ReLU activation function [19].
Both the self-attention layer and the feed-forward network are
followed by an addition operation and a layer normalization.
The final result is activated by Sigmoid function.

The inference network Q aims to infer the latent code
m based on the travel demand sequence C. Since the travel
demand and local traffic is highly related, we can safely
assume the travel demand can successfully provide the current
spatial-temporal traffic pattern which is incorporated into the
latent code m. The input of Q is a sequence of travel demand,
and the output is a latent code m which indicates a specific
spatial-temporal traffic pattern. The architecture of Q is very
close to that of generator.

C. Meta-Training and Meta-Testing
To optimize our final objective function Eq 5, we propose

novel meta-training and meta-testing algorithms.
Meta-Training Process. Our objective Eq 5 requires a prior
distribution p(m), however, in most cases, the prior distri-
bution p(m) is hard to acquire (e.g., we do not know the
distribution of spatial-temporal traffic patterns of a city), but
we can use the following generation process to synthesize
latent variable m, which approximates the prior distribution
p(m) when the generator G and the inference network Q are
trained to optimality, the effectiveness has been validated by
Yu et al. [30]:

C ∼ pdata, c ∼ Q(m | C) (6)

Algorithm 1 Meta-Training Process

Input: Traffic data and travel demand data collected from
multiple source cities, i.e., D = {(X,C)R}, initial pa-
rameters of generator, discriminator and inference network
ψ0, θ0, ω0, repectively.

Output: Learned generator Gψ , discriminator Dθ and infer-
ence network Qω .

1: repeat
2: Sample two batches of traffic and travel demand pairs

breal and b′real: breal, b
′
real ∼ D

3: Infer a batch of latent codes m from breal: m ∼
Qω(m | breal).

4: Sample a batch of generated traffic and travel demand
pairs bfake using the generator Gψ , i.e. bfake ∼ Gψ(bfake |
m).

5: Update θ with Adam [13] to maximize Eq. 7 using b′real
and bfake.

6: Update ω with Adam [13] to minimize Eq. 9 using breal
and bfake.

7: Update ψ with with Adam [13] to minimize Eq. 8.
8: until Convergence

The detailed training process is in Algorithm 1. In Algo-
rithm 1, the generator G, the discriminator D and the inference
network Q are updated using Eq. 8, Eq. 7, Eq. 9, respectively.
Denote θ as the parameters of D, η as the learning rate, we
update the discriminator D with Eq. 7:

LD(θ) = EX,C∼pdata [logD(X,C,m)]

+ EZ∼pZ
[log(1−D(G(Z,m),m))],

θ = θ + η▽θLD(θ). (7)

For the generator G, we denote ψ as the parameters of G,
the loss function and updating rule for G is as follows:

LG(ψ) = EZ∼pZ
[log(1−D(G(Z,m),m))]

− λEC∼G(Z,m)

[
Em′∼P (m|Ĉ)

[
logQ

(
m′ | Ĉ

)]]
,

ψ = ψ − η▽ψLG(ψ). (8)

For the inference network Q, we denote ω as the parameters
of Q, we update Q with the following rules:

LQ(ω) = −λEC∼G(Z,m)

[
Em′∼P (m|Ĉ)

[
logQ

(
m′ | Ĉ

)]]
,

ω = ω − η▽ωLQ(ω). (9)

The detailed training process is shown in Algorithm 1,
where D is updated in line 6, G and Q are updated in
line 7 and line 8, respectively. After convergence, we get the
distribution of spatial-temporal traffic patterns, i.e., p(m).
Meta-Testing Process. During meta-testing process, we can
directly infer the latent code using the local travel demand in
the target city, and the latent code will guide the generator to
produce the corresponding traffic estimations. (See Alg 2).



Algorithm 2 Meta-Testing Process

Input: New travel demand data in the target city {C̃}, well-
trained G and Q.

Output: Traffic estimations {X̃}.
1: Infer latent codes {m̃} based on {C̃} with Q.
2: Sample noise vectors {Z} from Gaussian distribution.
3: Output traffic estimations X̃ = G(Z, m̃) with generator

G.
TABLE II: Dataset descriptions.

City City size Data Timespan Data size

Shenzhen 40× 50
Speed 07/01/16-12/31/16 (155520,12,20,20)
Inflow 07/01/16-12/31/16 (155520,12,20,20)

Demand 07/01/16-12/31/16 (155520,12,20,20)

HB 40× 50
Speed 07/01/15-12/31/15 (151440,12,20,20)
Inflow 07/01/15-12/31/15 (151440,12,20,20)

Demand 07/01/15-12/31/15 (151440,12,20,20)

Chengdu 20× 20
Speed 10/01/16-10/31/16 (31,12,20,20)
Inflow 10/01/16-10/31/16 (31,12,20,20)

Demand 10/01/16-10/31/16 (31,12,20,20)

Xi’An 20× 20
Speed 10/01/16-10/31/16 (31,12,20,20)
Inflow 10/01/16-10/31/16 (31,12,20,20)

Demand 10/01/16-10/31/16 (31,12,20,20)

IV. EVALUATION

In this section, we provide extensive experiments on datasets
collected from multiple cities to validate the effectiveness of
our Mest-GAN.

A. Datasets and Experiment Descriptions

Dataset Descriptions. In our experiments, we collect taxi
GPS records from multiple cities including Chengdu, Xi’An,
Shenzhen and HB which is a northern city in China and
referred to as HB. A GPS record includes five attributes
including the taxi plate ID, longitude, latitude, time stamp and
passenger indicator which is a binary value indicating whether
a passenger is on board (e.g., 0 indicates no passenger on board
and 1 otherwise). Different traffic data can be extracted from
the taxi GPS records including traffic speed, travel demand
and taxi inflow The detailed information of dataset is shown
in Table II.

In each city, we partition the whole city area into equal-sized
grid cells. The traffic status in each grid cell is measured by
average traffic speed and taxi inflow. The average traffic speed
in each time slot is calculated by dividing the travel distance
by the time period; taxi inflow is the total number of arrivals at
each grid cell within a specific time slot, and the travel demand
captures the number of taxi pickup and drop-off events within
a grid cell during a time slot. Since it is hard to collect the
total travel demand from all transport modes, in this study, we
use the demand for taxis instead, its effectiveness has been
validated in many previous works [6], [18], [32], [33]. More
details about each city are as follows:
• Shenzhen. The taxi GPS records collected in Shenzhen,

China is from Jul 1st to Dec 31st, 2016. Shenzhen city is di-
vided into 40×50 grid cells with a side-length l1 = 0.0084◦

in latitude and l2 = 0.0126◦ in longitude, and each region is
formed by 20×20 grid cells. There are 155,520 region-wise
traffic sequences in total, each traffic sequence includes 12

traffic distributions from 7am to 7pm (i.e., we view one hour
as a time slot).

• HB. The taxi GPS records collected in HB, China is from
Jul 1st to Dec 31st, 2015. HB City is partitioned into 40×50
grid cells with a side-length l1 = 0.0084◦ in latitude and
l2 = 0.0126◦ in longitude, and each region is formed by
20 × 20 grid cells. There are 155,520 region-wise traffic
sequences in total, each traffic sequence indicates the traffic
changes within one day from 7am to 7pm.

• Chengdu. In Chengdu City, we collect taxi GPS records
from one region which contains 20 × 20 grid cells, each
grid cell has a side-length l1 = 0.0038◦ in latitude and l2 =
0.0045◦ in longitude. The data time span is from Oct 1st to
Oct 31st, 2016, there are 31 region-wise traffic sequences,
each sequence includes 12 traffic distributions from 7am to
7pm per day.

• Xi’An. Similar to Chengdu, in Xi’An City, we collect taxi
GPS records from only one region which contains 20× 20
grid cells, each grid cell has a side-length l1 = 0.0048◦

in latitude and l2 = 0.0041◦ in longitude. The data time
span is from Oct 1st to Oct 31st, 2016, there are 31 region-
wise traffic sequences, each sequence includes 12 traffic
distributions from 7am to 7pm per day.

Experiment Descriptions. In our evaluation section, we con-
duct 2 different experiments to prove the effectiveness of our
Mest-GAN:
• Experiment 2: traffic speed and taxi inflow estimation in

Chengdu. In this experiment, we treat Shenzhen, HB and
Xi’An as source cities, and view Chengdu as the target city.
Given new travel demands of Chengdu, we aim to estimate
both traffic speed and taxi inflow. We use the data from
Shenzhen, HB and Xi’An for meta-training, and we only
provide the travel demand in Xi’An during meta-testing
process.

• Experiment 2: traffic speed and taxi inflow estimation
in Xi’An. In this experiment, we treat Shenzhen, HB and
Chengdu as source cities, and view Xi’An as the target
city. Given new travel demands of Xi’An, we aim to
estimate the corresponding traffic speed and taxi inflow. In
the experiment, we use the data from Shenzhen, HB and
Chengdu for meta-training, in the meta-testing process, we
only provide the travel demand in Xi’An.

B. Baselines
To evaluate the effectiveness of our model, we compare

our Mest-GAN with other state-of-the-art methods. We first
use the following two baselines including cGAN+LSTM and
Curb-GAN to validate that classical traffic estimation methods
cannot deal with the data scarcity problem and cannot provide
realistic traffic estimations in the target city:

• cGAN+LSTM [10], [16] The standard conditional GAN
combined with LSTM is used to capture the spatial-
temporal dependencies of traffic, which includes a gen-
erator and a discriminator with convolutional layers and
LSTM inside. The model is trained on the data collected
from source cities and tested on the target city.



• Curb-GAN [33] The Curb-GAN contains a generator and
a discriminator, and dynamic convolutional layers [32]
and self-attention layers are embedded into both model
components. This model is trained on the data collected
from source cities and tested on the target city.

Next, we compare our Mest-GAN with other state-of-the-
art methods which apply transfer learning and meta-learning
framework to address the traffic estimation problem in the data
scarcity scenario:

• RegionTrans [27] This model targets time-series traffic
prediction problem and only allows knowledge transfer
from one source city to the target. When applying to our
traffic estimation problem in case of data scarcity in the
target city, we treat travel demand as external context
which is the input of ConvLSTM. Besides, we only use
one city as the source for model training, during testing
process, we use the travel demand data in the target city
for future traffic estimation.

• MetaST [28] MetaST is designed for traffic prediction
across multiple cities, which is composed of convolu-
tional layers and LSTM. This model supports knowledge
transfer from multiple cities, which simply applies meta
learning framework (i.e., MAML [5]) and views the
traffic data collected from one source city as a meta-
training task.

• STrans-GAN [34] STrans-GAN combines the transfer
learning with generative adversarial networks for cross-
city traffic estimation, which learns traffic patterns from
multiple source cities through the traffic clustering and
pre-training process, and transfers the knowledge to the
target city in fine-tuning process. We apply convolutional
layers to both generator and discriminator. The data from
source cities is for pre-training, and only one data sample
from the target is used for fine-tuning.

C. Evaluation Metrics

In our experiments, we use mean absolute percentage error
(MAPE) and rooted mean square error (RMSE) to evaluate
our model:

MAPE =
1

ns

ns∑
i=1

|yi − ŷi| /yi,

RMSE =

√√√√ 1

ns

ns∑
i=1

(yi − ŷi)
2
, (10)

where ns is the total number of grid cells of the target region,
yi is the ground-truth traffic status observed in a grid cell si,
and ŷi is the corresponding estimated result.

D. Experimental Settings

In the experiment, since we parametrize the auxiliary distri-
bution Q(m|G(Z,m)) as a neural network, its form depends
on the true posterior P (m|G(Z,m)). We found that simply
treating Q(m|G(Z,m)) as a factored Gaussian distribution
is sufficient.

For all experiments, we use Adam [13] for online optimiza-
tion and apply batch normalization [11] after convolutional
layers. The learning rate is set to 2× 10−5 and the batch size
is 32. The detailed structure of Mest-GAN in our experiments
is as follows: the generator G contains 2 convolutional layers
with kernel sizes {3, 3} and output channels {256, 1}, and
a multi-head self-attention layer combined with feed-forward
network with layer normalization; the discriminator D also
includes two convolutional layers with kernel sizes {3, 3} and
output channels {256, 256}, and a multi-head self-attention
layer combined with feed-forward network. The inference
network Q has similar internal layers as the generator.

E. Results

1) Overall performance results: In this part, we have the
average traffic estimation performance over all the time slots
within a day (i.e., from 7am to 6pm). When we perform the
traffic speed estimation and taxi inflow estimation in Xi’An
City, we produce 31 days traffic estimation sequences and
compare with the ground-truth traffic from the testing set. For
each specific time slot (i.e., one hour), both RMSE and MAPE
are calculated, and we average the 12 statistics for 12 time slots
and get the average RMSE and MAPE. For each deep model,
we trained and test the model for three times and picked the
best trained model.

The detailed results are shown in Table III and Table IV.
When we use Chengdu City as the target city and estimate
the traffic speed and taxi inflow based on the local travel
demands (as shown in Table III), we found the our Mest-
GAN have the best average performance compared with other
baseline methods. The standard traffic estimation methods
including both Curb-GAN and cGAN+LSTM have the highest
error, which means when these models are trained on the
data provided by other source cities, they cannot successfully
estimate the traffic in the target city, since the target city
has never been seen by the model. Besides, the baseline
models which apply the transfer learning and supervised
meta-learning frameworks (including RegionTrans, MetaST
and STrans-GAN) also have high error in traffic estimation
in the target city, which indicates these model cannot work
well when they are not fine-tuned with the data from the
target city. By contrast, our Mest-GAN can automatically
learn the distribution of spatial-temporal patterns using the
travel demand data, once the target city cannot provide prior
traffic data, we can successfully learn its traffic pattern with
the local travel demand and thus accurately estimate the
corresponding traffic. The traffic estimation performance in
Xi’An City (shown in Table IV) have similar results.

2) Traffic estimation performance in consecutive time slots:
Beside the average performance, we also care about the traffic
estimation performance in consecutive time slots within a
day. When we use Chengdu City as the target city, the
detailed traffic speed estimation performance is shown in
Figure 6. We find in each specific time slot (i.e., one hour),
the standard traffic estimation model including the Curb-GAN
and cGAN+LSTM cannot successfully capture the spatial and



TABLE III: Performance on task 1: traffic speed and taxi inflow estimation in Chengdu City.
Methods cGAN+LSTM Curb-GAN RegionTrans MetaST STrans-GAN Mest-GAN

Traffic speed RMSE 72.22 75.21 59.99 63.96 61.23 54.56
MAPE 3.64 3.41 2.68 2.96 2.78 2.51

Taxi inflow RMSE 421.99 459.25 405.72 392.98 452.21 382.65
MAPE 10.22 10.41 11.42 9.01 10.32 8.67

TABLE IV: Performance on task 2: traffic speed and taxi inflow estimation in Xi’An City.
Methods cGAN+LSTM Curb-GAN RegionTrans MetaST STrans-GAN Mest-GAN

Traffic speed RMSE 74.21 57.72 55.34 62.75 36.62 28.78
MAPE 2.44 2.27 1.99 2.12 1.98 1.82

Taxi inflow RMSE 492.81 440.72 474.82 531.98 350.81 312.51
MAPE 12.87 10.54 9.67 12.63 8.52 7.33

Fig. 5: Traffic speed estimation in Xi’An City in consecutive time slots.
temporal traffic patterns in the target city without the access
to the prior data, and they present high estimation errors.
Moreover, the MetaST viewed each city as a specific task
and apply MAML during meta-training, in the meta-testing
process, the target city cannot provide any prior traffic data,
and we directly feed the travel demand to the learned model
which cannot accurately identify the traffic patterns for the
target. The RegionTrans and STrans-GAN require some prior
data from the target city, if we omit the fine-tuning process,
both of the model would fail due to the lack of data. Thus,
Strans-GAN should be applied in the case where prior
traffic data is provided for the fine-tuning process, Mest-
GAN is able to estimate the traffic for the target city when
no prior data is available.

When we use Xi’An City as the target city, the detailed
traffic speed estimation performance is shown in Figure 5.
We find the Curb-GAN and cGAN+LSTM cannot be used to
estimate the traffic in a city when they are trained on other
cities. Besides, the existing meta-learning or transfer learning
frameworks for traffic estimation including MetaST, Region-
Trans and STrans-GAN are cannot learn the traffic patterns
independently, they need pre-defined number of tasks (e.g.,
traffic patterns), which usually lead to unstable performance.
Our Mest-GAN, however, does not need any pre-defined num-
ber of patterns, it can learn the traffic patterns automatically
and also capture the spatial and temporal dependencies of
traffic, and thus provide stable estimation performance.

3) Evaluations on hyper-parameters: Since our Mest-GAN
has different hyper-parameters including the dimension of
random noise, the dimension of the latent code, the discount
factor of the mutual information loss (i.e., λ), batch size, etc,
which would greatly influence the model performance. it is

important to evaluate how these hyper-parameters would affect
the traffic estimation results. For each the experiment in this
part, we only adjust one hyper-parameter and keep the others
the same.

As shown in Figure 7(a), we fixed all other parameters of
Mest-GAN and adjust the dimension of random noise, we find
that the estimation results of our Mest-GAN is sensitive to the
random noise dimension. If the noise dimension is very low,
the estimation errors will be high, and similarly, if the noise
dimension is very high, the estimation performance would also
be affected. With low noise dimension, the weights within the
generative adversarial network are not enough to learn the
complex spatial and temporal dependencies of traffic. But if
the noise dimension is too high, the model will contain too
much randomness which make it hard to converge and learn
meaningful patterns from the data.

Figure 7(b) shows the estimation performance with different
dimensions of latent code λ, and we get high errors when the
dimension of latent code is too high or too low. For example,
if the dimension of latent code is one, which means all the
information extracted from the time-series travel demands
from multiple source cities should be included in only one
dimensional latent code, apparently, the complex information
cannot be learned in a good way, and some important infor-
mation of the traffic patterns would be lost, which finally leads
to poor performance. Moreover, if the dimension of the latent
code is very high, the information of spatial-temporal traffic
patterns learned from the travel demand sequence should be
kept very well, however, it usually need huge amount of
training data to finish the mapping from the demand sequences
to the latent space. Thus, the dimension of the latent code
cannot be too low or high. A proper dimension of the latent



Fig. 6: Traffic speed estimation in Chengdu City in consecutive time slots.

Fig. 7: Impact of parameters on traffic speed estimation in Xi’An City.
code is the key to the success of the traffic estimation in the
target city.

Figure 7(c) is the estimation performance based on different
λ in our final objective function 5. λ should be chosen based
on the GAN loss scale, improper λ would affect the final
generation performance, and in our experiments, the best
choice of λ is 0.1. A large value of λ will lead to the
situation where mutual information loss is dominant, and the
discriminator cannot learn to distinguish the real data from the
generated data, and the generator cannot learn to generate like-
real traffic distribution. Furthermore, a small value of λ will
make the mutual information loss too trivial to be considered
during training, so the inference network cannot work very
well. Thus, a proper λ is vital to the good performance.

Last but not the least, as shown in Figure 7(d), we evaluate
the impact of the batch size. Large batch size results in
bad estimation performance in our experiments, which also
matches the conclusions in the work [12], [33] stating that
there is a significant degradation in the generalization ability
of the model is a large batch size is used in the model training.

V. RELATED WORK

Urban traffic estimation. Traffic estimation is a vital problem
in urban computing area, which helps reduce traffic congestion
and provide insights for urban planning. In recent years, many
works have focused on urban traffic estimation problem. For
example, built upon the classic machine learning techniques,
some works [14], [24] proposed novel frameworks to predict
traffic volume, other works such as [4], [23] focused on
predicting human mobility. However, these works ignore the
complex urban conditions and cannot estimate the traffic
or mobility in an geographical region. Besides, many other

works tried to borrow deep learning techniques to deal with
complex spatial-temporal dependencies in traffic estimation.
For example, convolutional neural networks are proved to be
successful in capturing traffic spatial dependencies [29], [31].
Recurrent neural networks [3] and LSTM [10] significantly
improved the accuracy in traffic prediction by capturing traffic
temporal dependencies very well [26]. Moreover, the convo-
lutional neural networks and LSTM were perfectly combined
in spatial-temporal prediction problems [22], [36]. However,
all these works require a large amount of data to guarantee
model convergence and decent performance, once facing the
data scarcity scenario, all the works would fail.

Meta-Learning. Meta learning tries to learn a generalized
model from training tasks which can be fast adapted into
new related tasks with a few samples. The state-of-the-art
meta-learning methods including MAML [5], Reptile [20],
SNAIL [17], MOCA [7], etc. Meta learning has been applied
to many areas including supervised/unsupervised learning,
imitation learning and urban computing. For example, when
solving the traffic estimation problem in the data scarcity sce-
nario, MetaST [28] is proposed which is based on the standard
MAMAL algorithm, and views each city as a specific task.
STrans-GAN combines Reptile, transfer learning and GAN
together to solve the cross-city traffic estimation problem.
However, these works pre-defined the number of tasks or
traffic patterns in meta-training, which usually leads to a lot
of bias. And they still require some traffic data in the target
city, which make them fail when the target city cannot provide
any prior data.



VI. CONCLUSION

In this paper, we aim to solve the conditional urban traffic
estimation problem in case of data scarcity (i.e., the target city
cannot provide any prior data) and tackle the main challenges
including (1) Knowledge learning from the source and (2)
knowledge adaptation without prior traffic data. We formulate
the cross-city conditional urban traffic estimation problem as
an unsupervised meta-learning problem and we solve this
problem from generative adversarial meta-learning perspec-
tive. A novel model — Meta Spatial-Temporal Generative
Adversarial Network (Mest-GAN) is proposed, which can
successfully estimate the traffic in target city in consecutive
time slots. In the meta testing process, we use the travel
demand data in the target city for adaptation, where the
inference network infers a latent code guiding the generator to
produce accurate traffic estimations, and thus the prior traffic
data in the target city is not required. Extensive experiments on
real-world multiple-city datasets demonstrate that our Mest-
GAN produces promising performance in both traffic speed
and taxi inflow estimations.

ACKNOWLEDGMENT

Yanhua Li and Yingxue Zhang were supported in part by
NSF grants IIS-1942680 (CAREER), CNS-1952085, CMMI-
1831140, and DGE-2021871. Jun Luo was partially sup-
ported by ARC Discovery Project (Grant DB210100743). Xun
Zhou is funded partially by Safety Research using Simula-
tion University Transportation Center (SAFER-SIM). SAFER-
SIM is funded by a grant from the U.S. Department of
Transportation’s University Transportation Centers Program
(69A3551747131). However, the U.S. Government assumes
no liability for the contents or use thereof.

REFERENCES

[1] Mest-GAN. https://www.dropbox.com/sh/suswe3x16arpemq/
AADLWsvg7BFNVQEqph8kcCXXa?dl=0, 2022. [Online].

[2] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. CoRR, 2016.
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