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Abstract—Conditional traffic estimation is a vital problem
in urban plan deployment, which can help evaluate urban
construction plans and improve transportation efficiency. Con-
ventional methods for conditional traffic estimation usually focus
on supervised settings, which require a large amount of labeled
training data. However, in many urban planning applications,
the large amount of traffic data in a new city can be hard or
impossible to acquire. To tackle the conditional traffic estimation
problem in data scarcity situations, we formulate the problem as a
spatial transfer generative learning problem. Compared to prior
spatial transfer learning frameworks with only single source city,
we propose to extracts knowledge from multiple source cities to
improve the estimation accuracy and transfer stability, which is
a technically more challenging task. As a solution, we propose a
new cross-city conditional traffic estimation method — Spatially-
Transferable Generative Adversarial Networks (STrans-GAN)
with novel pre-training and fine-tuning algorithms. STrans-
GAN preserves diverse traffic patterns from multiple source
cities through traffic clustering, and incorporates meta-learning
idea into the pre-training process to learn a well-generalized
model. During fine-tuning, we propose to add a cluster matching
regularizer to realize the flexible adaptation in different scenarios.
Through extensive experiments on multiple-city datasets, the
effectiveness of STrans-GAN is proved.

Index Terms—Generative adversarial networks; meta learning;
urban traffic estimation.

I. INTRODUCTION

Conditional traffic estimation is a critical problem in urban
development, especially in land use planning, subway routes
planning, etc. Given the road network of a city, its historical
traffic status, and an urban development plan which usually
leads to new local travel demands, the conditional urban traffic
estimation problem aims to accurately estimate the future traf-
fic status based on the changing travel demands. Solving such
problem not only provides insights to evaluate the feasibility of
the urban deployment plan, but also helps to reduce potential
traffic congestion and improves local transportation efficiency.

A number of data-driven methods have achieved success
on single-city conditional traffic estimation, such as classical
machine learning models [1], [3], [12] or GAN-based models
including CurbGAN [39] and TrafficGAN [38]. However,
these methods typically require large amount of training data
of the target city and are unable to perform well in case of
data scarcity, e.g., when estimating the traffic in a previously
unseen city or a newly-built region. A simple idea to address

Fig. 1: An example of conditional traffic estimation by trans-
ferring knowledge from multiple source cities (Shenzhen,
Chengdu, etc) to the target city (Xi’An).
the data scarcity issue would be to “borrow” enough training
data from other cities if they are available. However, due to
spatial heterogeneity and local traffic pattern differences, such
tricks usually result in poor estimation quality.

An effective solution to the data scarcity problem is to
employ a transfer learning paradigm, which avoids training
models directly using the limited data of a “new” city but
transfers urban knowledge from other source cities (with abun-
dant data) to the target city (with insufficient data) to enable
good performance [29]. In this paper, we aim at developing a
spatial transfer generative learning framework for cross-city
conditional urban traffic estimation in case of data scarcity.
Prior art. Unfortunately, existing spatial transfer learning
techniques may not directly solve our cross-city conditional
traffic estimation problem. For example, RegionTrans [28],
TL-DCRNN [19] and STCNet [36] borrow the transfer leaning
framework to forecast future traffic using historical time-
series traffic data. However, in most of the urban transfer
leaning methods, only one source city is used to extract
transferred knowledge. To enable good transfer performance,
these methods have to guarantee that the source city and the
target city have a lot in common, or it would turn out to be a
failure if the two cities are too different [31].

Some works try to transfer knowledge from multiple cities,
which potentially increases the diversity of the source data and
thus avoids the high-similarity constraint between source cities
and target cities. For example, a new transfer framework [11]
tries to generate mobility data for a target city by transferring
knowledge from multiple source cities. MetaST [32] focuses
on time series traffic prediction using multiple cities as source
cities. However, both of them cannot solve the conditional



Fig. 2: Solution framework.

traffic estimation problem, since they did not consider the
impact of travel demands and the diverse traffic patterns in
different cities.
Our insight. When solving the cross-city conditional traffic
estimation problem in the transfer learning paradigm, com-
pared to one single source city, the shared knowledge extracted
from multiple source cities would contain more comprehensive
traffic patterns, and provide more information about how traffic
status changes along the complex road networks in different
regions. Therefore, transferring from multiple source cities
may greatly improve the estimation accuracy and transfer
stability. For example, as illustrated in Figure 1, with a
new urban construction plan to be evaluated in Xi’An City
which only has little traffic data available, we can borrow
the traffic knowledge extracted from multiple source cities
(e.g., Shenzhen, Chengdu, etc.) to provide more accurate traffic
estimations for Xi’An.
Challenges. In this paper, we study the problem of conditional
traffic estimation in case of data scarcity by transferring
knowledge from multiple source cities. However, such cross-
city conditional traffic estimation problem is hard to solve due
to two key challenges:
(1) Knowledge extraction and transfer. The traffic patterns
between travel demands and local traffic status highly depend
on the complex road networks and vary from region to
region and time to time, which lead to the difficulties in
knowledge extraction and transfer. When multiple cities are
considered as source cities, the traffic patterns become even
more complicated and thus harder to learn and transfer.
(2) Knowledge adaptation. The extracted knowledge should be
well-adapted to the target city. Since different regions of the
target city in different time slots could have different traffic
patterns, the extracted knowledge should be adapted to all
these scenarios in different ways. Thus, how to perform the
knowledge adaption in a flexible manner is very important but
challenging.
Contributions. To solve the cross-city conditional urban
traffic estimation problem in case of data scarcity, we pro-
pose to estimate traffic in a data generation perspective un-
der the multiple-city transfer learning setup. Hence, a new
spatial transfer generative learning framework — Spatially-

TABLE I: Notations
Notations Descriptions
S = {sij} Grid cells within a city
ds ∈ N Travel demand of a grid cell s
dR ∈ Nr×r Travel demand of a region
T = {τ} Trajectory set
xs ∈ R Traffic status of a grid cell s
xR ∈ Rr×r Traffic distribution of the region R
Usource = {ui

source} Source cities
utarget Target city
Dsource = {dR} Travel demands from source city regions
Xsource = {xR} traffic distributions from source city regions
Dtarget = {dR} Travel demands from target city regions
Xtarget = {xR} traffic distributions from target city regions

Transferable Generative Adversarial Networks (STrans-GAN)
is proposed, which successfully tackles both of the afore-
mentioned challenges and provides accurate traffic estimations
based on various travel demands. Figure 2 is our solution
framework. To solve the first challenge, traffic clustering is
performed to aggregate all historical traffic data from multiple
source cities into different clusters based on their traffic pat-
terns, and then in the pre-training process, meta-learning idea
is incorporated to learn a good global-initialized model from
all clusters. To address the second challenge, the pre-trained
STrans-GAN can be adapted to any scenario of the target city
with only few samples by adding an extra cluster matching
regularizer. Our main contributions can be summarized as
follows:
• To the best of our knowledge, we are the first to solve

the cross-city conditional traffic estimation problem in case
of data scarcity from a spatial transfer generative learning
perspective, and propose a novel method — Spatially-
Transferable Generative Adversarial Networks (STrans-
GAN).

• STrans-GAN preserves various traffic patterns from multiple
source cities through traffic clustering, and incorporates
meta-learning idea into the pre-training process to learn a
global generalized model, which targets the first challenge.
During fine-tuning, a new cluster matching regularizer is
added to realize the flexible adaptation in different scenarios
and thus addresses the second challenge.

• Extensive experiments on multiple-city datasets are per-
formed to evaluate the effectiveness of our STrans-GAN.
The experimental results prove that STrans-GAN signifi-
cantly improves the urban traffic estimation performance and
outperforms state-of-the-art baselines.

II. PRELIMINARIES

In this section, we first introduce the definitions and then
formally define our problem.
Definition 1 (Grid cells). A city is partitioned into m1 ×m2

grid cells, each grid cell has equal side-length in latitude and
longitude. The set of grid cells of one city is defined as S =
{sij}, where ⟨i, j⟩ indicates the coordinates of the grid cell
sij , 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2.
Definition 2 (Target region). A target region R is a square
geographic region in a city, formed with r × r grid cells. A



whole city can be split into multiple regions R = {Rij},
where ⟨i, j⟩ indicates the coordinates of the top-left grid cell
in the region Rij .
Definition 3 (Travel Demand). The travel demand of an area
captures the total number of departures in a period of time.
Thus, during one time period, the travel demand of a grid cell
s is denoted as ds ∈ N0, and the travel demand of a target
region is denoted with a matrix dR ∈ Nr×r

0 , where each entry
ds within the matrix dR indicates the corresponding travel
demand of the grid cell s within the region R. In this study,
we use the demand for taxis to represent travel demand just
as many literature works [9], [38], [39].
Definition 4 (Traffic status and traffic distribution). Traffic
status is the basic knowledge of the road network traffic at
a grid cell, which can be measured by traffic speed, traffic
inflow/outflow, etc. We denote xs as the average traffic status
of a grid cell s within a period of time, and denote xR ∈ Rr×r

as the traffic distribution matrix of the region R, which is an
r× r matrix composed of traffic status of all grid cells within
the region.
Problem Statement: Given multiple source cities Usource =
{ui

source} and one target city utarget partitioned into grid cells,
historical samples of travel demands Dsource = {dR} and
traffic distributions Xsource = {xR} from all source cities, and
only a small amount of historical samples of travel demands
Dtarget = {dR} and traffic distributions Xtarget = {xR} from
the target city, we aim to estimate the future traffic distributions
{x̃R} for a set of new travel demands {d̃R} from the target
city utarget.

III. METHODOLOGIES

Inspired by generative adversarial networks (GAN) [10], we
are trying to solve the cross-city conditional traffic estimation
problem in a traffic data generation perspective. The state-
of-the-art conditional GAN (cGAN) model [20] seems to
be a promising method, and we can view travel demands
as conditions and traffic distributions as “images”. However,
training a good cGAN model requires a large amount of
training data to ensure the convergence. If we perform traffic
estimation in a city which faces data scarcity, cGAN would
definitely fail due to the lack of training samples.

Thus, to better solve the cross-city conditional traffic es-
timation problem in case of data scarcity, we propose a
spatial transfer generative learning framework — STrans-
GAN which combines the generative model with multiple-
city transfer learning paradigm. STrans-GAN also addresses
the aforementioned challenges with novel designs:
(1) Knowledge extraction and transfer. To tackle the first
challenge, we propose a unique architecture and a pre-
training algorithm. STrans-GAN preserves various traffic pat-
terns through traffic clustering, and incorporates meta-learning
idea into the pre-training process to learn a well-initialized
model.
(2) Knowledge adaptation. During fine-tuning, we propose to
add an extra cluster matching regularizer to realize the flexible

adaptation in different scenarios of the target city. Besides, a
novel fine-tuning algorithm is proposed.

In this section, we first introduce our STrans-GAN archi-
tecture, and then detail the novel knowledge transfer and fine-
tuning processes.

A. Model Architecture
STrans-GAN is a framework designed to solve the cross-city

conditional urban traffic estimation problem in the multiple-
city transfer learning setup. Since the effectiveness of GANs in
traffic estimation has been proved in recent studies [38], [39],
in this work, we design our STrans-GAN on top of cGAN.
STrans-GAN has convolutional layers inside to better capture
the complex spatial traffic dependencies, and combines the
adversarial loss with L1 regularizer to improve the estimation
performance during pre-training process. Figure 3(a) is the
detailed architecture of our STrans-GAN, which is composed
of a generator G and a discriminator D.

The generator G aims to learn a distribution x ∼ G(z,d)
which matches the real data distribution pdata. The input of the
generator G includes i) a noise vector z randomly sampled
from Gaussian distribution, i.e., z ∼ pz , and ii) the travel
demand d. G outputs the generated traffic distribution x ∼
G(z,d). Inside the generator, d and z are first concatenated
together and then pass the stacked transposed convolutional
layers, all the layers are batch normalized and activated by
ReLU or hyperbolic tangent function.

The discriminator D aims to distinguish the real traffic
distributions from the generated ones by giving a high score
if the input x is sampled from the training set and matches the
travel demand d, or producing a low score if the input x is a
generated one or does not match the input d. The discriminator
has two components including DBody and DHead, the input
of DBody includes i) a traffic distribution x, which could
be sampled from the dataset or generated by the generator,
i.e., x ∼ pdata or x ∼ G(z,d), and ii) the travel demand
d. Inside DBody, d and x are concatenated together and
pass all stacked convolutional layers, all the layers are batch
normalized and activated by leaky ReLU or hyperbolic tangent
function. The output of DBody is a vector which can be viewed
as the embedding of the input pair (i.e., travel demand and
traffic distribution), the embedding vector passes DHead which
contains a single fully-connected layer to get the final score.

The basic objective function is as Eq. 1:

LcGAN (G,D) =Ex∼pdata [logD(x,d)]

+ Ez∼pz
[log(1−D(G(z,d),d))].

(1)

To avoid overfitting and improve the estimation perfor-
mance, we combine the Eq. 1 with L1 regularizer [14]:

LL1(G) = Ex∼pdata ,z∼pz [∥x−G(z,d)∥1] , (2)

thus, the final objective is as Eq. 3:

L(G,D) = LcGAN (G,D) + αLL1(G), (3)

and the optimization process is a min-max game, i.e.,
minG maxD L(G,D), where the generator tries to minimize
the loss while the discriminator tries to maximize it.



Fig. 3: STrans-GAN Overview.
B. Knowledge Transfer

The STrans-GAN introduced above only works when
enough training data available, once data scarcity appears, it
is hard to get a well-trained model. To better solve the traffic
estimation problem especially in a city facing data scarcity
problem, we propose to enable the STrans-GAN to learn from
multiple source cities, which means the knowledge learned
from source cities can be subsequently transferred to new
target cities.

However, knowledge extraction and transfer from multiple
source cities to the target city is very challenging. Given
the traffic data (including traffic status and travel demands)
and the road networks from multiple source cities, the key
steps of knowledge transfer includes (i) disentangling and
preserving different traffic patterns from multiple sources, and
(ii) learning an initialized STrans-GAN by which the learned
knowledge can be transferred. Thus, we first perform traffic
clustering to detect different traffic patterns, and then design a
novel pre-training algorithm which incorporates meta-learning
idea to learn a well-initialized STrans-GAN.

1) Traffic Clustering: Each region in each source city may
present various traffic patterns in different time slots, if the
traffic distributions from all source cities are simply mixed
together, the diversities of traffic patterns are ignored, which
usually leads to very limited improvements than leaning from
scratch (proved in the experiments). Thus, it is important to
recognize different traffic patterns from multiple source cities.

Clustering is an effective way to disentangle patterns from
data. However, given different source cities, we usually do
not know what the proper number of clusters is, and whether
the traffic data is clustered in a good way. To study how the
number of clusters affect the performance and what number of
clusters would be better for the given source cities, we apply
k-means [18] to cluster the traffic data (i.e., travel demand and
traffic distribution pairs from all source cities). K-means is a
flexible clustering method, it would produce different clusters
based on different initial centroids, which helps to explore the
best clustering way for different source cities, more empirical
proofs are shown in Section IV-E3.

For a region R in a specific time slot, we have a travel
demand d and a traffic distribution x, and the average travel
demand d̄ and average traffic status x̄ can be viewed as features
to perform k-means clustering, where d̄ = (

∑
d)/r2, x̄ =

(
∑

x)/r2.

In the traffic clustering, we execute the following four steps
alternatively: (1) choose the number of clusters and randomly
initialize the centroid for each traffic cluster; (2) assign all the
traffic data pairs to their closest cluster centroid; (3) calculate
the average feature of all traffic data within the cluster, and
assign the new centroid for each newly formed cluster to the
data point which is the closest to the average feature, (4) repeat
previous two steps. Besides, the number of clusters is a hyper-
parameter which will be tuned in the experiments.

Algorithm 1 STrans-GAN Pre-training Process

Input: Total training iterations K1, n traffic clusters (i.e.,
tasks), the innerloop k, initialized θG, θD, ϕG, and ϕD.

Output: Pre-trained θG, θD.
1: for iteration← 1 to K1 do
2: for cluster← 1 to n do
3: ϕG ← θG.
4: ϕD ← θD.
5: Sample a batch of data {(x,d)}.
6: for innerloop← 1 to k do
7: Sample a batch of noise vectors {z}.
8: Update ϕD with Eq. 5.
9: Update ϕG with Eq. 6.

10: end for
11: Update θD one step with Eq. 7.
12: Update θG one step with Eq. 8.
13: end for
14: end for

2) Pre-training: After clustering, the traffic data with sim-
ilar patterns is clustered together, and the traffic patterns
detection is finished, the next step is to find a way to make the
traffic knowledge preserved in each cluster transferable. Thus,
we propose a novel pre-training algorithm for our STrans-
GAN on top of meta-leaning method Reptile [22], this new
algorithm trains a global initialized STrans-GAN using the
data from all clusters, and the traffic knowledge is preserved
in the parameters of the pre-trained STrans-GAN.

Since the data in each cluster has similar patterns, we can
treat each cluster as a traffic estimation task τ and get the
estimation loss Lτ using the traffic data (i.e., traffic demand
and traffic distribution pairs) within cluster τ . During the
pre-training process, our goal is to find the well-initialized
generator and discriminator parameters θG and θD using all
training tasks (i.e., clusters), which can quickly converge on



Algorithm 2 STrans-GAN Fine-tuning Process

Input: Total fine-tuning iterations K2, n traffic clusters (i.e.,
tasks), dataset for fine-tuning, pre-trained θG, θD.

Output: Fine-tuned θG, θD.
1: Get the centroid embeddings for each cluster vc =

Dbody(xc,dc).
2: for iteration← 1 to K2 do
3: Sample a batch of data {(x,d)} from fine-tuning set
4: Sample a batch of noise vectors {z}.
5: Update θD with Eq. 12.
6: Update θG with Eq. 13.
7: end for

a new task τ ′ with little data and few adaptation steps by
minimizing the loss Lτ ′ .

The objective of the pre-training process is as follows:

minθG,θD
Eτ

[
Lτ

(
Uk
τ (θG,θD)

)]
, (4)

where U corresponds to one step of stochastic gradient de-
scent [2] on D and G with respect to the loss in Eq 3, and
we denote ϕG,ϕD = Uk

τ (θG,θD) as the adapted parameters
of G and D after k steps of gradient descent in task τ .

The detailed pre-training algorithm is as Alg 1. The adapted
parameters ϕD and ϕG of STrans-GAN for each cluster is
updated using Eq 5 and Eq 6. After adapting ϕG and ϕD k
steps in the innerloop, we update one step of θD and θG using
Eq 7 and Eq 8.

L(ϕD) = Ex∼pdata [logD(x,d)]

+ Ez∼pz [log(1−D(G(z,d),d)],

ϕD = ϕD + η▽ϕD
L(ϕD). (5)

L(ϕG) = Ez∼pz [log(1−D(G(z,d),d))] + αLL1(G),

ϕG = ϕG − η▽ϕG
L(ϕG). (6)

θD = θD + λ(θD − ϕD). (7)

θG = θG + λ(θG − ϕG). (8)

We can get a good global initialized STrans-GAN through
this pre-training process since its final outputs θG and θD
can reach the point which has minimum distance to each task
just as illustrated in Eq 9, and this has been proved by many
works [5], [22].

min
θG,θD

∑
τ

|θD − ϕτ
D|+ |θG − ϕτ

G| . (9)

In Eq 9, ϕτ
G and ϕτ

D are the optimal parameters of discrimi-
nator and generator for task τ . Hence, if we have a new task
τ ′ which is similar to one of the training tasks, θG and θD
can adapt to ϕτ ′

G , ϕτ ′

D very fast, and thus the rapid and easy
model generalization is realized.

C. Model Fine-tuning

Once we get a well-initialized STrans-GAN, we need to
adapt it to the target city. However, a target city would have
many different regions, each region would present different
traffic patterns during different time slots, and it is common
that the traffic distributions for a specific region belong to
different traffic clusters. Thus, fine-tuning the pre-trained
STrans-GAN with Eq 3 is not good enough, since it cannot
guarantee that the pre-trained STrans-GAN can be correctly
adapted to the corresponding traffic clusters for different traffic
distributions.

To fine-tune the STrans-GAN parameters on the target city
with few fine-tuning samples, we need to ensure the STrans-
GAN can detect the traffic patterns for each sample (i.e.,
travel demand and traffic distribution pair) and also gener-
ate reasonable traffic distributions, in other words, we need
to make the fine-tuning process flexible for different traffic
patterns. To realize this goal, firstly, we should guarantee
the STrans-GAN can produce like-real traffic distributions
based on different travel demands, which has been realized
by adversarial loss and the L1 loss shown in Eq 3. Besides,
we add a cluster matching regularizer, which enables the pre-
trained STrans-GAN to be automatically adapted to different
clusters based on different traffic patterns presented by the
data. During fine-tuning, for each data sample of the target city,
the cluster matching regularizer tries to minimize the distance
between the data sample embedding and its corresponding
cluster embedding, which helps the STrans-GAN to produce
better generation results and present more clear traffic patterns.
The cluster matching regularizer is defined as follows:

Lc(D) = E [∥vc − v∥1] ,
vc = Dbody(xc,dc),v = D′

body(x,d).
(10)

In Eq 10, for each data sample (x,d) from the target city,
we first figure out the exact cluster c that the data sample (x,d)
belongs to by calculating the distance between the data sample
and each cluster centroid and choosing the closest cluster, and
then we get the centroid embedding vc for cluster c by passing
the centroid to Dbody, i.e., vc = Dbody(xc,dc), where (xc,dc)
is the centroid of cluster c and Dbody is from the pre-trained
discriminator. For the data sample (x,d) in the target city,
we also get its current embedding v using D′

body, which is
the discriminator being fine-tuned. We minimize the distance
between the two embeddings, and thus realize the flexible fine-
tuning.

The final objective during the fine-tuning process is as
follows:

V (G,D) = LcGAN (G,D) + αLL1(G)− βLc(D), (11)

and the optimization process is minG maxD V (G,D).
The detailed fine-tuning algorithm is as Alg 2. The parame-

ters of STrans-GAN are fine-tuned using Eq 12 and Eq 13.



After fine-tuning, the generator G can be used for traffic
estimation in any region of the target city.

V (θD) = Ex∼pdata [logD(x,d)]

+ Ez∼pz [log(1−D(G(z,d),d)]− βLc(D),

θD = θD + η▽θD
V (θD). (12)

V (θG) = Ez∼pz [log(1−D(G(z,d),d))] + αLL1(G),

θG = θG − η▽θG
V (θG). (13)

TABLE II: Dataset descriptions.
City Data Timespan City size Data size

Shenzhen
Speed

07/01/16-12/31/16 40× 50 (155520,5,5)Inflow
Demand

HB
Speed

07/01/15-12/31/15 40× 50 (151440,5,5)Inflow
Demand

Chengdu
Speed

10/01/16-10/31/16 20× 20 (4784,5,5)Inflow
Demand

Xi’An
Speed

10/01/16-10/31/16 20× 20 (4368,5,5)Inflow
Demand

IV. EXPERIMENTS

A. Dataset and Experiment Descriptions

Data Preprocessing In our experiments, we collect traffic
data including travel demand, taxi inflow and traffic speed
from Chengdu, Xi’An, Shenzhen and HB which is a northern
city in China and referred to as HB. All the traffic data is
extracted from (1) taxi GPS data; (2) road map data. Here we
take the Shenzhen city as an example:
• Taxi GPS data. We collect the GPS records from 17,877

taxis in Shenzhen, China from Jul 1st to Dec 31st, 2016. The
GPS sensors equipped in the taxis generate a GPS record ev-
ery 40 seconds on average, and more than 51,000,000 GPS
records can be collected each day. Each record contains five
features including taxi ID, time stamp, passenger indicator,
latitude and longitude. The passenger indicator is a binary
value indicating whether a passenger is on board.

• Road map. In our study, we use the Google GeoCoding1 to
retrieve the bounding box of Shenzhen. The bounding box is
defined between 22.534◦ to 22.87◦ in latitude and 113.77◦

to 114.40◦ in longitude. Shenzhen road map is shown in
Fig. 4(a).

Fig. 4: Shenzhen road map and map gridding.
1https://developers.google.com/maps/documentation/geocoding/

As shown in Figure 4(b), we apply map gridding method to
the Shenzhen road map. The whole city is partitioned into 40×
50 grid cells, and regions are formed by 5×5 grid cells. With
the gridded road map and the taxi GPS records, we extract the
travel demand, taxi inflow and traffic speed. In each time slot,
with the passenger indicator feature in the GPS records of a
taxi, we can easily monitor the passenger pickup and drop-
off information, and we count the total number of pickup and
drop-off events within each grid cell as the travel demand. And
we count all taxis which stay or arrive at each grid cell as the
taxi inflow. Traffic speed is calculated by the travel distance
of a taxi and its corresponding time period.
Dataset Descriptions. After data preprocessing, we got our
datasets for model training. The detailed information of
datasets is shown in Table II.

In each city, with map gridding method, the whole city is
partitioned into equal-sized grid cells, and we collect three
different traffic datasets, i.e., traffic speed, taxi inflow and
travel demand. During each time slot (i.e., one hour), traffic
speed is the average speed extracted from taxis GPS records;
taxi inflow indicates the total number of taxis that get into
a grid cell; and travel demand calculates the total number of
taxi pickup events within a grid cell. In this study, we use
the demand for taxis to represent travel demand, and many
studies have shown the effectiveness of using taxi demand
to represent travel demand [9], [21], [38], [39]. More details
about the dataset in each city are as follows:
• Shenzhen. The traffic data collected in Shenzhen, China is

from Jul 1st to Dec 31st, 2016. The whole city is partitioned
into 40 × 50 grid cells with a side-length l1 = 0.0084◦ in
latitude and l2 = 0.0126◦ in longitude, and each region is
formed by 5 × 5 grid cells. There are 155,520 region-wise
traffic distributions in total, and each traffic distribution is a
5× 5 matrix.

• HB. The traffic data collected in HB, China is from Jul 1st to
Dec 31st, 2015. HB City is partitioned into 40×50 grid cells
with a side-length l1 = 0.0084◦ in latitude and l2 = 0.0126◦

in longitude, and each region is formed by 5× 5 grid cells.
There are 151,440 region-wise traffic distributions in total.

• Chengdu The traffic data is collected from only one district
of Chengdu, China, which is partitioned into 20 × 20 grid
cells with multiple 5 × 5 regions, each grid cell has a
side-length l1 = 0.0038◦ in latitude and l2 = 0.0045◦ in
longitude. The data time span is from Oct 1st to Oct 31st,
2016. The total number of traffic distributions is 4,784.

• Xi’An. Similar to Chengdu, the traffic data in Xi’An is
also collected from one district, which is also partitioned
into 20 × 20 grid cells with a side-length l1 = 0.0041◦ in
latitude and l2 = 0.0048◦ in longitude. The data time span
is from Oct 1st to Oct 31st, 2016. The total number of traffic
distributions is 4,784.
We have released our code and data2 to support the repro-

ducibility.

2https://www.dropbox.com/sh/nfjzwi3z6v2rw93/
AAAYVFyO8Q7K57ufu2hwcLeSa?dl=0

https://developers.google.com/maps/documentation/geocoding/
https://www.dropbox.com/sh/nfjzwi3z6v2rw93/AAAYVFyO8Q7K57ufu2hwcLeSa?dl=0
https://www.dropbox.com/sh/nfjzwi3z6v2rw93/AAAYVFyO8Q7K57ufu2hwcLeSa?dl=0


TABLE III: Performance on experiment 1: traffic speed and taxi inflow estimation in Xi’An.
Methods Smoothing cGAN Curb-GAN TrafficGAN Single-TL Multi-TL RegionTrans MetaST STrans-GAN

Speed RMSE 14.062±0.471 19.255±0.726 15.748±0.562 14.783±0.578 13.783±0.242 11.702±0.685 14.697±0.281 14.771±0.572 5.881±0.133
MAPE 0.524±0.019 0.818±0.028 0.590±0.023 0.596±0.017 0.381±0.012 0.348±0.017 0.557±0.021 0.566±0.015 0.241±0.007

Inflow RMSE 144.335±4.258 102.938±4.213 188.368±6.244 101.168±3.321 112.379±4.321 105.986±5.299 137.457±5.928 118.219±4.576 79.362±2.784
MAPE 2.796±0.021 0.912±0.068 1.589±0.158 1.837±0.110 0.787±0.062 0.878±0.044 3.258±0.352 0.860±0.025 0.445±0.016

TABLE IV: Performance on experiment 2: traffic speed and taxi inflow estimation in Chengdu.
Methods Smoothing cGAN Curb-GAN TrafficGAN Single-TL Multi-TL RegionTrans MetaST STrans-GAN

Speed RMSE 15.879±0.262 32.650±0.821 23.098±0.679 20.738±0.592 22.229±0.671 23.322±0.542 18.991±0.312 25.393±0.524 11.763±0.231
MAPE 0.758±0.037 1.655±0.048 0.890±0.028 0.911±0.016 0.395±0.022 0.274±0.032 0.679±0.032 0.947±0.034 0.176±0.011

Inflow RMSE 241.975±6.634 449.551±8.946 223.745±7.267 378.909±8.918 503.079±12.982 278.867±6.213 588.33±10.192 240.394±7.214 95.597±4.423
MAPE 8.198±0.625 12.833±0.827 5.653±0.261 12.740±0.672 5.181±0.337 4.681±0.224 12.754±0.482 5.729±0.121 1.181±0.033

Fig. 5: Visualizations of (1st row) traffic speed estimation in Xi’An & (2nd row) taxi inflow estimation in Chengdu.
Experiment Descriptions. In our evaluation section, we con-
duct 2 different experiments to prove the effectiveness of our
STrans-GAN:

• Experiment 1: traffic speed and taxi inflow estimation
in Xi’An. In this experiment, we treat Shenzhen, HB and
Chengdu as source cities, and view Xi’An as the target city.
Given new travel demands of different regions in Xi’An,
we aim to estimate the corresponding traffic speed and taxi
inflow. Besides, 70% of data from Xi’An is used for fine-
tuning, the remaining 30% is used for testing.

• Experiment 2: traffic speed and taxi inflow estimation
in Chengdu. In this experiment, we treat Shenzhen, HB
and Xi’An as source cities, and view Chengdu as the target
city. Given new travel demands of different regions in
Chengdu, we aim to estimate both traffic speed and taxi
inflow. Similarly, we also use 70% of data from Chengdu
for fine-tuning, and the remaining for testing.

B. Baselines

To verify the existing traffic estimation methods cannot
produce good estimations when the target city has data scarcity
problem, we compare our model with the state-of-the-art traffic
estimation models:

• Spatial Smoothing [8]. Given one target region and its
travel demand, this method selects the traffic distributions
from nearby regions which have similar travel demands and
then computes an average traffic distribution as the final
estimation.

• cGAN [20]. The conditional GAN applies convolutional
layers inside both generator and discriminator. We use travel

demands as conditions to estimate the corresponding traffic
distributions.

• Curb-GAN [16], [39]. Curb-GAN applies self-attention
and convolutional layers to deal with sequential traffic
data generation problem. The generator is trained with the
adversarial loss and L1 loss together.

• TrafficGAN [14], [38] TrafficGAN applies dynamic convo-
lutional layers inside both generator and discriminator, and
the generator is trained using both adversarial loss and L2
loss.

Besides, we compare our STrans-GAN with state-of-the-
art transfer leaning methods including both single-source and
multi-source transfer learning methods:

• Multi-TL Multi-source transfer learning uses the same
architecture as STrans-GAN, but it is trained with simply
mixed data from all source cities without clustering.

• Single-TL Single-source transfer learning uses the same
architecture as STrans-GAN, but only has one source city
for training.

• RegionTrans [28] This model targets time-series traffic
prediction problem and only allows knowledge transfer from
one source city to the target.

• MetaST [32] This model supports knowledge transfer from
multiple cities, which treats each city as a task without
considering different traffic patterns and directly applies
MAML [7].

C. Evaluation Metrics

In our experiments, mean absolute percentage error (MAPE)
and rooted mean square error (RMSE) are used to evaluate our



Fig. 6: Hyper-parameters studies on traffic speed estimation (Xi’An) and taxi inflow estimation (Chengdu).
model:
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(14)
where ns is the total number of grid cells in the target

region, yi is the ground-truth traffic status observed in one
grid cell si, and ŷi is the corresponding estimated value.

D. Experimental Settings

Our experiments are running on Red Hat Enterprise Linux
7.2 with a GPU of K80 and CPU of E5-2680. The code
released is in Python 3.7.3. The implementation of neural
networks is based on PyTorch 1.0.14. We also employ Numpy
1.16.4 and Scipy 1.3.0 in the implementation.

For both experiments, we use data from three different
source cities for pre-training, and select 70% of the data from
the target city for fine-tuning and use the remaining 30% for
testing. All models are updated using Adam optimizer [15].
The learning rate is set to 2 × 10−5. The batch size is 32.
Besides, we set α = 0.1, β = 0.1, λ = 0.1. The detailed
structure of STrans-GAN in our experiments is as follows:
the generator G contains 4 transposed convolutional layers
with kernel sizes {5, 5, 5, 5} and output feature dimensions
{1024, 128, 64, 1}; the discriminator Dbody includes four
convolutional layers with kernel sizes {5, 5, 5, 5} and output
channels {64, 128, 1024, 1024}. And the Dhead only has one
single fully-connect layer.

E. Experimental Results

1) Estimation Performance: In this part, we provide the
evaluation statistics for our STrans-GAN and all baselines in
both experiment. All deep models are trained and fine-tuned
three times, and during testing time, we estimate the traffic
for 16 different regions in the target city, and finally calculate
the statistics using Eq 14. Based on the performance shown in
Table III and Table IV, we have the following observations.

In both experiments, the traditional smoothing method has
very high MAPE, which means the estimation at each grid
cell is not accurate due to not considering local traffic pat-
terns; other state-of-the-art traffic estimation models (including
cGAN, TrafficGAN and Curb-GAN) do not provide good
estimation results due to the lack of training samples. Besides,
the single-source transfer learning methods (i.e., RegionTrans
and Single-TL) have low estimation quality, since these meth-
ods only take one city as source city, once the source city

doesn’t present similar traffic patterns to the target city, these
methods would fail. For the multi-source transfer learning
methods (i.e., MetaST and Multi-TL), they cannot detect
different traffic patterns in each source city, and thus they are
unable to guarantee the model performance. Our STrans-GAN
outperforms all baseline models in both experiments since it
takes diverse traffic patterns into consideration and learns a
good initialization from multiple source cities, and it is also
successfully adapted to different scenarios in the target city.

2) Estimation Visualization: To further validate the effec-
tiveness of our STrans-GAN, for both target cities including
Xi’An and Chengdu, we present the visualizations of the
ground-truth and the estimated traffic distributions over the
road networks.

As shown in Figure 5, we visualize the traffic distributions
including the ground-truth and the estimation results generated
by our STrans-GAN and some competitive baselines (i.e.,
cGAN, Curb-GAN, metaST and RegionTrans) in Xi’An City
(the 1st row) and Chengdu City (the 2nd row). Obviously,
in both experiments, cGAN and Curb-GAN cannot capture
the traffic patterns very well due to the lack of data. MetaST
and RegionTrans also present low quality estimations, they
cannot identify different traffic patterns from source cities and
fail to transfer useful knowledge to different target regions
in the target city. In contrast, our STrans-GAN generates
reasonable traffic distributions which are close to the ground-
truth, and our STrans-GAN is able to successfully extract
traffic knowledge from multiple source cities and adapt to the
target city in a flexible way.

3) Hyper-parameter Studies: In our STrans-GAN, there
are many hyper-parameters which may influence the model
performance. In this section, we study how hyper-parameters
influence the estimation performance of our STrans-GAN.
The evaluated hyper-parameters includes the number of traffic
clusters, embedding dimension, innerloop, λ and α.

From the results shown in Fig 6(a), we find in different
target cities, the ideal number of traffic clusters varies since
different cities would present different traffic patterns. In
Xi’An City, the ideal number of traffic clusters is 5, in
Chengdu City, the best number of traffic clusters is 10, which
indicates Chengdu City has more complex traffic patterns
compared to the traffic in Xi’An City.

In Fig 6(b), when updating the global-initialized STrans-
GAN parameters θG and θD during pre-training process, the
step size λ matters. Too small or large λ hinders convergence.
For both experiments, the ideal step size λ should be 0.1.



TABLE V: Ablation Study: traffic speed and taxi inflow estimation in Xi’An.

Methods STrans-GANc STrans-GANp STrans-GANf STrans-GANr STrans-GAN

Speed RMSE 11.702± 0.685 19.88±1.295 18.624±0.899 15.354±0.825 5.881±0.133
MAPE 0.348±0.017 0.899±0.055 0.754±0.067 0.684±0.043 0.241±0.007

Inflow RMSE 105.986±5.299 107.266±5.837 113.265±7.399 94.682±4.829 79.362±2.784
MAPE 0.878±0.044 0.897±0.079 0.925±0.081 0.681±0.032 0.445±0.016

In Fig 6(c), we can find the estimation performance is
sensitive to the value of α, α should be chosen based on the
adversarial loss scale to ensure the whole loss scale keeps the
same, in our experiments, the best choice of α is 0.1.

In Fig 6(d), we investigate how the embedding dimension
influences the estimation performance. We find in both experi-
ments, larger embedding dimension provides better estimation
results, which indicates that larger embedding dimension can
better preserve traffic patterns and potentially improve the
estimation performance.

In Fig 6(e), the value of innerloop in Alg 1 is the number of
steps when we adapt to each traffic cluster, and we study how
the number of innerloop affects performance. It is obvious
that too small or too large innerloop value usually leads to
longer time to converge. In our experiments, the ideal number
of innerloop should be 10 or 20.

4) Ablation Studies: Our STrans-GAN is composed of
multiple components, including traffic clustering, pre-training,
fine-tuning, and cluster matching regularizer, in this section,
to verify the contribution of each component in our model, we
present ablation studies.

As shown in Table V, we estimate traffic speed and taxi
inflow with Xi’An City as the target city, and compare
our STrans-GAN with STrans-GANp, STrans-GANc, STrans-
GANr, STrans-GANf . STrans-GANc removes the traffic clus-
tering module, STrans-GANp removes the pre-training part.
In STrans-GANf , fine-tuning process is removed. And in
STrans-GANr, the clustering matching regularizer is removed.
Apparently, if pre-training module is removed in STrans-
GANp, the cluster matching regularizer cannot work without a
pre-trained model, and the limited data in the target city cannot
support GAN training; if fine-tuning module is removed, the
model cannot directly estimate the traffic in the target city
without access to any data from the target; if the cluster
matching regularizer is removed, the traffic clustering does
not contribute to the fine-tuning process at all. Thus, each
component in our Strans-GAN is important and contributes to
the final estimation performance.

V. RELATED WORK

In this section, we summarize the literature works from two
related areas: 1) urban traffic estimation, and 2) urban transfer
learning.
Urban traffic estimation. In recent years, more and more
studies have focused on urban traffic estimation problem.
Some works [1], [3], [12], [17], [25], [35] tried to apply classic
machine learning methods to solve this problem. For example,
the work [35] proposes to predict traffic volume by combining
machine learning techniques and well-established traffic flow

theory, and the works [6], [24], [25] propose novel frameworks
to predict crowd flows and individual’s movement.

Other works borrowed deep learning frameworks to solve
various spatial-temporal prediction problems. For example,
some works [33], [37] focus on citywide flow prediction
and traffic demand prediction using CNN to better capture the
spatial dependencies of urban data. Other works such as [26],
[30], [34] try to solve travel time prediction and traffic speed
prediction problems using recurrent neural networks [4] and
LSTM [13] aiming to better capture the temporal dependencies
within the data. Moreover, the work [41] tries to predict
crowd density with ConvLSTM [23] to capture both spatial
and temporal dependencies simultaneously. In addition, many
previous works propose to solve the traffic estimation prob-
lem using generative adversarial networks [10]. For example,
TrafficGAN [38], Curb-GAN [39] are proposed to estimate
future traffic in an geographical region, C3-GAN [40] tries
to estimate traffic based on complex traffic related features.
However, all these works would fail once lacking training
samples.
Urban transfer learning. Transfer learning is a subarea in
machine learning, which focuses on extracting and learning
knowledge in one problem and applying it to a different
but related problem. Transfer learning has been applied to
many different urban scenarios, e.g., many urban computing
applications including traffic prediction, events detection, and
urban deployment borrow transfer learning framework to solve
urban data scarcity problem [29].

In previous studies, some works including [19], [28], [31],
[36] propose novel traffic prediction frameworks on top of
transfer leaning. For example, Wang et al. [27] propose to use
transfer learning to solve ride-sourcing car detection problem.
Among all these works, only one source domain is used
to extract and learn knowledge. Some other works try to
transfer knowledge from multiple source domains to target
domains. For example, He et al. propose a novel mobility
prediction framework [11] which transfers knowledge learned
from multiple source cities to target cities aiming to generate
mobility data for the target. Yao et al. [32] try to solve
the traffic prediction problem using multiple cities as source
cities. However, all these works cannot be generalized to
solving conditional traffic estimation problem, and they did
not consider the impact of travel demands and diverse traffic
patterns.

VI. CONCLUSION

In this paper, we tackle the cross-city conditional traffic
estimation problem in case of data scarcity, and we propose
to perform traffic estimation with a novel spatial transfer gen-
erative learning framework — STrans-GAN, which combines



generative models with transfer learning in multiple source
cities setup. STrans-GAN preserves various traffic patterns
through clustering, and incorporate meta-learning idea into the
pre-training process to learn a good global generalized model.
During fine-tuning, we propose to add a cluster matching
regularizer aiming to realize the flexible adaptation in dif-
ferent scenarios. Besides, novel pre-training and fine-tuning
algorithms are proposed. Through extensive experiments on
multiple-city datasets, the effectiveness of STrans-GAN is
proved, which significantly improves the estimation perfor-
mance and outperforms all state-of-the-art baseline methods.
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